Management of vehicular parking in the crowded environment is the indispensable requirement for the smart city scenario. The advent and potential development of information Communication Technologies (ICT) and Interne...
详细信息
Nowadays,commercial transactions and customer reviews are part of human life and various business *** technologies create a great impact on online user reviews and activities,affecting the business *** reviews and rat...
详细信息
Nowadays,commercial transactions and customer reviews are part of human life and various business *** technologies create a great impact on online user reviews and activities,affecting the business *** reviews and ratings are more helpful to the new customer to purchase the product,but the fake reviews completely affect the *** traditional systems consume maximum time and create complexity while analyzing a large volume of customer ***,in this work optimized recommendation system is developed for analyzing customer reviews with minimum ***,Amazon Product Kaggle dataset information is utilized for investigating the customer *** collected information is analyzed and processed by batch normalized capsule networks(NCN).The network explores the user reviews according to product details,time,price purchasing factors,etc.,ensuring product quality and *** effective recommendation system is developed using a butterfly optimized matrix factorizationfiltering *** the system’s efficiency is evaluated using the Rand Index,Dunn index,accuracy,and error rate.
Accurate diagnosis and treatment planning for medical conditions rely heavily on the results of medical image segmentation. Medical images are available in many modalities like CT scans, MRI, histopathological, and ul...
详细信息
Accurate diagnosis and treatment planning for medical conditions rely heavily on the results of medical image segmentation. Medical images are available in many modalities like CT scans, MRI, histopathological, and ultrasound images. Among all, the real-time analysis of the ultrasound is the most complex as the internal organ’s visualization requires experience from the radiologist. Diagnosing the medical conditions and unavailability of experienced radiologists during an emergency requires automated segmentation which heavily depends on computer-aided diagnostic systems. The new generation CAD systems are found to incorporate advanced deep learning algorithms to produce accurate segmentation results. While most of the segmentation models relate to the encoder-decoder model as the base architecture and thus evolve a variety of modifications in its pipeline architecture. This paper presents the analytical study of the various Encoder- Decoder based models like UNet, Residual UNet (Res-U-Net), Dense UNet (DenseUNet), Attention UNet, UNet + +, Double UNet, and U2Net (U-Squared-Net) on ultrasound image segmentation. Further, the paper presents the various trade-offs, application areas, open challenges, and performance analysis of these models on benchmark datasets, namely the HC18 Challenge dataset, CUM dataset, and B-mode Ultrasound Nerve Segmentation dataset. The performance analysis of these models is presented using the six state-of-the-art metrics like Dice coefficient, Jaccard index, sensitivity, specificity, Mean Absolute distance, and Housdorff Distance. Based on the above parameters U2-Net (U-Squared-Net) outperformed all other neural network models for all three datasets. In terms of all four criteria (Dice Coefficient: 0.92, 0.89, 0.9, Jaccard Index: 0.81, 0.79, 0.81, Sensitivity: 0.86, 0.84, 0.86, Specificity: 0.97, 0.95, 0.96), the U2-Net (U-Squared-Net) model performed the best. Over the HC18 Challenge dataset, the CUM dataset, and the B-Mode Ultrasound ne
In the contemporary landscape of advanced mobile technology, social media platforms have emerged as prominent arenas for expression, fostering vast volumes of communication ripe for research and analysis. Social netwo...
详细信息
The rising number of vehicles on the road has led to a concerning increase in accidents, as reported by the Indian Government's Ministry of Road Transport and Highways. In many cases, prompt medical assistance can...
详细信息
One of the drastically growing and emerging research areas used in most informationtechnology industries is Bigdata *** is created from social websites like Facebook,WhatsApp,Twitter,*** about products,persons,initia...
详细信息
One of the drastically growing and emerging research areas used in most informationtechnology industries is Bigdata *** is created from social websites like Facebook,WhatsApp,Twitter,*** about products,persons,initiatives,political issues,research achievements,and entertainment are discussed on social *** unique data analytics method cannot be applied to various social websites since the data formats are *** approaches,techniques,and tools have been used for big data analytics,opinion mining,or sentiment analysis,but the accuracy is yet to be *** proposed work is motivated to do sentiment analysis on Twitter data for cloth products using Simulated Annealing incorporated with the Multiclass Support Vector Machine(SA-MSVM)***-MSVM is a hybrid heuristic approach for selecting and classifying text-based sentimental words following the Natural Language Processing(NLP)process applied on tweets extracted from the Twitter dataset.A simulated annealing algorithm searches for relevant features and selects and identifies sentimental terms that customers ***-MSVM is implemented,experimented with MATLAB,and the results are *** results concluded that SA-MSVM has more potential in sentiment analysis and classification than the existing Support Vector Machine(SVM)***-MSVM has obtained 96.34%accuracy in classifying the product review compared with the existing systems.
The primary objective of fog computing is to minimize the reliance of IoT devices on the cloud by leveraging the resources of fog network. Typically, IoT devices offload computation tasks to fog to meet different task...
详细信息
The primary objective of fog computing is to minimize the reliance of IoT devices on the cloud by leveraging the resources of fog network. Typically, IoT devices offload computation tasks to fog to meet different task requirements such as latency in task execution, computation costs, etc. So, selecting such a fog node that meets task requirements is a crucial challenge. To choose an optimal fog node, access to each node's resource availability information is essential. Existing approaches often assume state availability or depend on a subset of state information to design mechanisms tailored to different task requirements. In this paper, OptiFog: a cluster-based fog computing architecture for acquiring the state information followed by optimal fog node selection and task offloading mechanism is proposed. Additionally, a continuous time Markov chain based stochastic model for predicting the resource availability on fog nodes is proposed. This model prevents the need to frequently synchronize the resource availability status of fog nodes, and allows to maintain an updated state information. Extensive simulation results show that OptiFog lowers task execution latency considerably, and schedules almost all the tasks at the fog layer compared to the existing state-of-the-art. IEEE
Most Personalized Federated Learning (PFL) algorithms merge the model parameters of each client with other (similar or generic) model parameters to optimize the personalized model (PM). However, the merged model param...
详细信息
Cloud computing has drastically changed the delivery and consumption of live streaming *** designs,challenges,and possible uses of cloud computing for live streaming are studied.A comprehensive overview of the technic...
详细信息
Cloud computing has drastically changed the delivery and consumption of live streaming *** designs,challenges,and possible uses of cloud computing for live streaming are studied.A comprehensive overview of the technical and business issues surrounding cloudbased live streaming is provided,including the benefits of cloud computing,the various live streaming architectures,and the challenges that live streaming service providers face in delivering high‐quality,real‐time *** different techniques used to improve the performance of video streaming,such as adaptive bit‐rate streaming,multicast distribution,and edge computing are discussed and the necessity of low‐latency and high‐quality video transmission in cloud‐based live streaming is *** such as improving user experience and live streaming service performance using cutting‐edge technology,like artificial intelligence and machine learning are *** addition,the legal and regulatory implications of cloud‐based live streaming,including issues with network neutrality,data privacy,and content moderation are *** future of cloud computing for live streaming is examined in the section that follows,and it looks at the most likely new developments in terms of trends and *** technology vendors,live streaming service providers,and regulators,the findings have major policy‐relevant *** on how stakeholders should address these concerns and take advantage of the potential presented by this rapidly evolving sector,as well as insights into the key challenges and opportunities associated with cloud‐based live streaming are provided.
The proposed work objective is to adapt Online social networking (OSN) is a type of interactive computer-mediated technology that allows people to share information through virtual networks. The microblogging feature ...
详细信息
The proposed work objective is to adapt Online social networking (OSN) is a type of interactive computer-mediated technology that allows people to share information through virtual networks. The microblogging feature of Twitter makes cyberspace prominent (usually accessed via the dark web). The work used the datasets and considered the Scrape Twitter Data (Tweets) in Python using the SN-Scrape module and Twitter 4j API in JAVA to extract social data based on hashtags, which is used to select and access tweets for dataset design from a profile on the Twitter platform based on locations, keywords, and hashtags. The experiments contain two datasets. The first dataset has over 1700 tweets with a focus on location as a keypoint (hacking-for-fun data, cyber-violence data, and vulnerability injector data), whereas the second dataset only comprises 370 tweets with a focus on reposting of tweet status as a keypoint. The method used is focused on a new system model for analysing Twitter data and detecting terrorist attacks. The weights of susceptible keywords are found using a ternary search by the Aho-Corasick algorithm (ACA) for conducting signature and pattern matching. The result represents the ACA used to perform signature matching for assigning weights to extracted words of tweet. ML is used to evaluate Twitter data for classifying patterns and determining the behaviour to identify if a person is a terrorist. SVM (Support Vector Machine) proved to be a more accurate classifier for predicting terrorist attacks compared to other classifiers (KNN- K-Nearest Neighbour and NB-Naïve Bayes). The 1st dataset shows the KNN-Acc. -98.38% and SVM Accuracy as 98.85%, whereas the 2nd dataset shows the KNN-Acc. -91.68% and SVM Accuracy as 93.97%. The proposed work concludes that the generated weights are classified (cyber-violence, vulnerability injector, and hacking-for-fun) for further feature classification. Machine learning (ML) [KNN and SVM] is used to predict the occurrence and
暂无评论