Power is an issue that must be considered in the design of logic circuits. Power optimization is a combinatorial optimization problem, since it is necessary to search for a logical expression that consumes the least a...
详细信息
Power is an issue that must be considered in the design of logic circuits. Power optimization is a combinatorial optimization problem, since it is necessary to search for a logical expression that consumes the least amount of power from a large number of Reed-Muller(RM) logical expressions. The existing approach for optimizing the power of multi-output mixed polarity RM(MPRM) logic circuits suffer from poor optimization results. To solve this problem, a whale optimization algorithm with two-populations strategy and mutation strategy(TMWOA) is proposed in this paper. The two-populations strategy speeds up the convergence of the algorithm by exchanging information about the two-populations. The mutation strategy enhances the ability of the algorithm to jump out of the local optimal solutions by using the information of the current optimal solution. Based on the TMWOA, we propose a multi-output MPRM logic circuits power optimization approach(TMMPOA). Experiments based on the benchmark circuits of the Microelectronics Center of North Carolina(MCNC) validate the effectiveness and superiority of the proposed TMMPOA.
Research on mass gathering events is critical for ensuring public security and maintaining social ***,most of the existing works focus on crowd behavior analysis areas such as anomaly detection and crowd counting,and ...
详细信息
Research on mass gathering events is critical for ensuring public security and maintaining social ***,most of the existing works focus on crowd behavior analysis areas such as anomaly detection and crowd counting,and there is a relative lack of research on mass gathering *** believe real-time detection and monitoring of mass gathering behaviors are essential formigrating potential security risks and ***,it is imperative to develop a method capable of accurately identifying and localizing mass gatherings before disasters occur,enabling prompt and effective *** address this problem,we propose an innovative Event-Driven Attention Network(EDAN),which achieves image-text matching in the scenario of mass gathering events with good results for the first *** image-text retrieval methods based on global alignment are difficult to capture the local details within complex scenes,limiting retrieval *** local alignment-based methods aremore effective at extracting detailed features,they frequently process raw textual features directly,which often contain ambiguities and redundant information that can diminish retrieval efficiency and degrade model *** overcome these challenges,EDAN introduces an Event-Driven AttentionModule that adaptively focuses attention on image regions or textual words relevant to the event *** calculating the semantic distance between event labels and textual content,this module effectively significantly reduces computational complexity and enhances retrieval *** validate the effectiveness of EDAN,we construct a dedicated multimodal dataset tailored for the analysis of mass gathering events,providing a reliable foundation for subsequent *** conduct comparative experiments with other methods on our dataset,the experimental results demonstrate the effectiveness of *** the image-to-text retrieval task,EDAN achieved the best performance on the R@5 metric,w
The enormous developments of gaming devices as well as mobile apps have increased the demand of bandwidth. Development of wireless applications has been affected because of the insufficient spectrum resources in the 3...
详细信息
Deep Learning (DL) techniques have significantly improved the diagnostic accuracy in healthcare, particularly for detecting and classifying skin cancer. Such technological advancements will assist healthcare professio...
详细信息
The notion of edge computing has recently arisen as a potentially helpful advancement in distributed computing and communication infrastructure. To better understand the evolution and diffusion of technological knowle...
详细信息
The concept of smart houses has grown in prominence in recent *** challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device **...
详细信息
The concept of smart houses has grown in prominence in recent *** challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device *** home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical *** paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in *** have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT *** system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing *** have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache *** feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time *** is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation ***,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber *** trial results support the proposed system and demonstrate its potential for use in everyday life.
At a time when technology is spreading rapidly and widely, technology has become a necessity in daily life and practical life, and this led to the emergence of many cyber-physical systems (CPS), among which the medica...
详细信息
Stock market’s volatile and complex nature makes it difficult to predict the market situation. Deep Learning is capable of simulating and analyzing complex patterns in unstructured data. Deep learning models have app...
详细信息
To learn and analyze graph-structured data, Graph Neural Networks (GNNs) have emerged as a powerful framework over traditional neural networks, which work well on grid-like or sequential structure data. GNNs are parti...
详细信息
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy ...
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy *** learning(FL) enhances RS's privacy by enabling model training on decentralized data [2]. Although integrating KG and FL can address both data sparsity and privacy issues in RSs [3], several challenges persist. CH1,Each client's local model relies on a consistent global model from the server, limiting personalized deployment to endusers.
暂无评论