Autism Spectrum Disorder(ASD)requires a precise diagnosis in order to be managed and ***-invasive neuroimaging methods are disease markers that can be used to help diagnose *** majority of available techniques in the ...
详细信息
Autism Spectrum Disorder(ASD)requires a precise diagnosis in order to be managed and ***-invasive neuroimaging methods are disease markers that can be used to help diagnose *** majority of available techniques in the literature use functional magnetic resonance imaging(fMRI)to detect ASD with a small dataset,resulting in high accuracy but low *** supervised machine learning classification algorithms such as support vector machines function well with unstructured and semi structured data such as text,images,and videos,but their performance and robustness are restricted by the size of the accompanying training *** learning on the other hand creates an artificial neural network that can learn and make intelligent judgments on its own by layering *** takes use of plentiful low-cost computing and many approaches are focused with very big datasets that are concerned with creating far larger and more sophisticated neural *** modelling,also known as Generative Adversarial Networks(GANs),is an unsupervised deep learning task that entails automatically discovering and learning regularities or patterns in input data in order for the model to generate or output new examples that could have been drawn from the original *** are an exciting and rapidly changingfield that delivers on the promise of generative models in terms of their ability to generate realistic examples across a range of problem domains,most notably in image-to-image translation tasks and hasn't been explored much for Autism spectrum disorder prediction in the *** this paper,we present a novel conditional generative adversarial network,or cGAN for short,which is a form of GAN that uses a generator model to conditionally generate *** terms of prediction and accuracy,they outperform the standard *** pro-posed model is 74%more accurate than the traditional methods and takes only around 10 min for training even with a huge dat
Internet of Things(IoT)is the most widespread and fastest growing technology *** to the increasing of IoT devices connected to the Internet,the IoT is the most technology under security *** IoT devices are not designe...
详细信息
Internet of Things(IoT)is the most widespread and fastest growing technology *** to the increasing of IoT devices connected to the Internet,the IoT is the most technology under security *** IoT devices are not designed with security because they are resource constrained ***,having an accurate IoT security system to detect security attacks is *** Detection Systems(IDSs)using machine learning and deep learning techniques can detect security attacks *** paper develops an IDS architecture based on Convolutional Neural Network(CNN)and Long Short-Term Memory(LSTM)deep learning *** implement our model on the UNSW-NB15 dataset which is a new network intrusion dataset that cate-gorizes the network traffic into normal and attacks *** this work,interpolation data preprocessing is used to compute the missing ***,the imbalanced data problem is solved using a synthetic data generation *** experiments have been implemented to compare the performance results of the proposed model(CNN+LSTM)with a basic model(CNN only)using both balanced and imbalanced ***,with some state-of-the-art machine learning classifiers(Decision Tree(DT)and Random Forest(RF))using both balanced and imbalanced *** results proved the impact of the balancing *** proposed hybrid model with the balance technique can classify the traffic into normal class and attack class with reasonable accuracy(92.10%)compared with the basic CNN model(89.90%)and the machine learning(DT 88.57%and RF 90.85%)***,comparing the proposed model results with the most related works shows that the proposed model gives good results compared with the related works that used the balance techniques.
A lot of research shows that there could be several reasons why the duality of agricultural products has been reduced. Plant diseases make up one of the most important components of this quality. Therefore, the reduct...
详细信息
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized *** detection is one of the key methodologies utilized to ensure the security...
详细信息
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized *** detection is one of the key methodologies utilized to ensure the security of the *** intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system *** this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot *** this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant *** proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO *** results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness *** a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11.
Brain tumor is a global issue due to which several people suffer,and its early diagnosis can help in the treatment in a more efficient *** different types of brain tumors,including gliomas,meningiomas,pituitary tumors...
详细信息
Brain tumor is a global issue due to which several people suffer,and its early diagnosis can help in the treatment in a more efficient *** different types of brain tumors,including gliomas,meningiomas,pituitary tumors,as well as confirming the absence of tumors,poses a significant challenge using MRI *** approaches predominantly rely on traditional machine learning and basic deep learning methods for image *** methods often rely on manual feature extraction and basic convolutional neural networks(CNNs).The limitations include inadequate accuracy,poor generalization of new data,and limited ability to manage the high variability in MRI *** the EfficientNetB3 architecture,this study presents a groundbreaking approach in the computational engineering domain,enhancing MRI-based brain tumor *** approach highlights a major advancement in employing sophisticated machine learning techniques within computerscience and engineering,showcasing a highly accurate framework with significant potential for healthcare *** model achieves an outstanding 99%accuracy,exhibiting balanced precision,recall,and F1-scores across all tumor types,as detailed in the classification *** successful implementation demonstrates the model’s potential as an essential tool for diagnosing and classifying brain tumors,marking a notable improvement over current *** integration of such advanced computational techniques in medical diagnostics can significantly enhance accuracy and efficiency,paving the way for wider *** research highlights the revolutionary impact of deep learning technologies in improving diagnostic processes and patient outcomes in neuro-oncology.
Social Networks are an integral part of our daily life. These networks are tools for sharing information among different users. In such a network, the most influential users become the source for disseminating informa...
详细信息
This paper proposes a novel optimized histogram equalization technique using a genetic algorithm (GA) for brightness-preserved contrast enhancement. This method optimizes the histogram equalization technique to extrac...
详细信息
This paper reviews the limitations of traditional Secret Image Sharing (SIS) methods and recent advancements such as PSIS, RPSIS, and SSIS, and presents an optimized and practical combinatorial method for secret image...
详细信息
The creation of binary and multi-classification models with the goal of accurately detecting and categorizing motor defects is important to study. This work explores how autoencoders can be used to apply self-supervis...
详细信息
Underwater object detection plays a significant role in marine exploration activities such as ecological monitoring, conservation of undersea ecosystems, and underwater robotics. In contrast to detection in the atmosp...
详细信息
暂无评论