The skin acts as an important barrier between the body and the external environment, playing a vital role as an organ. The application of deep learning in the medical field to solve various health problems has generat...
详细信息
With the increasing popularity of smart portable electronic gadgets, voice-based online person verification systems have become prevalent. However, these systems are susceptible to attacks where illegitimate individua...
详细信息
With the increasing popularity of smart portable electronic gadgets, voice-based online person verification systems have become prevalent. However, these systems are susceptible to attacks where illegitimate individuals exploit the recorded voices of legitimate users, leading to false confirmations—spoofing attacks. To overcome this limitation, this article presents an innovative solution by combining speech and online handwritten signatures to mitigate the risks associated with spoofing attacks in voice-based authentication systems because a person has to be present in front of the system to produce an online handwritten signature. To accomplish this objective, this work proposes a novel bidirectional Legendre memory unit (BLMU), a type of recurrent neural network (RNN), for person authentication (verification) and recognition. The Legendre memory unit (LMU) is an innovative memory cell for RNNs that efficiently retains temporal/non-temporal sequential information over a long period with minimal resources. It achieves information orthogonalization by solving coupled ordinary differential equations (ODEs) and leveraging Legendre polynomials, ensuring effective data representation. The proposed framework for person authentication and recognition comprises seven convolution layers, four BLMU layers, two dense layers, and one output layer. The performance of the proposed BLMU-based deep learning framework has been evaluated on a self-generated/private dataset of combined feature matrix of voice signals and online handwritten signatures in the Devanagari script. To assess performance, experiments have also been conducted using various RNN architectures, such as LSTM, BLSTM, and ordinary differential equation recurrent neural network (ODE-RNN), to have a performance comparison with the proposed BLMU-based deep learning (DL) framework. The results demonstrate the superiority of the proposed BLMU-based DL framework in enhancing the accuracy of person verification systems,
The source coding problem with encoded side information is considered. A lower bound on the strong converse exponent has been derived by Oohama, but its tightness has not been clarified. In this paper, we derive a tig...
详细信息
Emotion detection from social media data plays a crucial role in studying societal emotions concerning different events, aiding in predicting the reactions of specific social groups. However, it is complex to automati...
详细信息
Background: The synthesis of reversible logic has gained prominence as a crucial research area, particularly in the context of post-CMOS computing devices, notably quantum computing. Objective: To implement the bitoni...
详细信息
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing de...
详细信息
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition.
This work proposes a novel and improved Butterfly Optimization Algorithm (BOA), known as LQBOA, to solve BOA’s inherent limitations. The LQBOA uses Lagrange interpolation and simple quadratic interpolation techniques...
详细信息
Binary self-dual cyclic codes have been studied since the classical work of Sloane and Thompson published in IEEE Trans. Inf. Theory, vol. 29, 1983. Twenty five years later, an infinite family of binary self-dual cycl...
详细信息
The number of Internet of Things (IoT) devices has increased rapidly in recent years, but lack effective methods to integrate their computational power. In this article, we propose NC-Load, which couples IoT devices i...
详细信息
Cardiovascular disease(CVD)remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis,driven by risk factors such as hypertension,high cholesterol,and irregular puls...
详细信息
Cardiovascular disease(CVD)remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis,driven by risk factors such as hypertension,high cholesterol,and irregular pulse *** diagnostic methods often struggle with the nuanced interplay of these risk factors,making early detection *** this research,we propose a novel artificial intelligence-enabled(AI-enabled)framework for CVD risk prediction that integrates machine learning(ML)with eXplainable AI(XAI)to provide both high-accuracy predictions and transparent,interpretable *** to existing studies that typically focus on either optimizing ML performance or using XAI separately for local or global explanations,our approach uniquely combines both local and global interpretability using Local Interpretable Model-Agnostic Explanations(LIME)and SHapley Additive exPlanations(SHAP).This dual integration enhances the interpretability of the model and facilitates clinicians to comprehensively understand not just what the model predicts but also why those predictions are made by identifying the contribution of different risk factors,which is crucial for transparent and informed decision-making in *** framework uses ML techniques such as K-nearest neighbors(KNN),gradient boosting,random forest,and decision tree,trained on a cardiovascular ***,the integration of LIME and SHAP provides patient-specific insights alongside global trends,ensuring that clinicians receive comprehensive and actionable *** experimental results achieve 98%accuracy with the Random Forest model,with precision,recall,and F1-scores of 97%,98%,and 98%,*** innovative combination of SHAP and LIME sets a new benchmark in CVD prediction by integrating advanced ML accuracy with robust interpretability,fills a critical gap in existing *** framework paves the way for more explainable and transparent decision-making in he
暂无评论