Background: Emotion is a strong feeling such as love, anger, fear, etc. Emotion can be recognized in two ways, i.e., External expression and Biomedical data-based. Nowadays, various research is occurring on emotion cl...
详细信息
Background: Emotion is a strong feeling such as love, anger, fear, etc. Emotion can be recognized in two ways, i.e., External expression and Biomedical data-based. Nowadays, various research is occurring on emotion classification with biomedical data. Aim: One of the most current studies in the medical sector, gaming-based applications, education sector, and many other domains is EEG-based emotion identification. The existing research on emotion recognition was published using models like KNN, RF Ensemble, SVM, CNN, and LSTM on biomedical EEG data. In general, only a few works have been published on ensemble or concatenation models for emotion recognition on EEG data and achieved better results than individual ones or a few machine learning approaches. Various papers have observed that CNN works better than other approaches for extracting features from the dataset, and LSTM works better on the sequence data. Methods: Our research is based on emotion recognition using EEG data, a mixed-model deep learning methodology, and its comparison with a machine learning mixed-model methodology. In this study, we introduced a mixed model using CNN and LSTM that classifies emotions in valence and arousal on the DEAP dataset with 14 channels across 32 people. Result and Discussion: We then compared it to SVM, KNN, and RF Ensemble, and concatenated these models with it. First preprocessed the raw data, then checked emotion classification using SVM, KNN, RF Ensemble, CNN, and LSTM individually. After that with the mixed model of CNN-LSTM, and SVM-KNN-RF Ensemble results are compared. Proposed model results have better accuracy as 80.70% in valence than individual ones with CNN, LSTM, SVM, KNN, RF Ensemble and concatenated models of SVM, KNN and RF Ensemble. Conclusion: Overall, this paper concludes a powerful technique for processing a range of EEG data is the combination of CNNs and LSTMs. Ensemble approach results show better performance in the case of valence at 80.70% and 78.24
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow *** cloud data centers,fog computing takes more time to run workflow ***,it is essenti...
详细信息
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow *** cloud data centers,fog computing takes more time to run workflow ***,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing *** task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog *** process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource *** this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local *** balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization *** FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response *** relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.
Deep neural networks have played a vital role in developing automated methods for addressing medical image segmentation. However, their reliance on labeled data impedes the practicability. Semi-Supervised learning is ...
详细信息
The architecture of integrating Software Defined Networking (SDN) with Network Function Virtualization (NFV) is excellent because the former virtualizes the control plane, and the latter virtualizes the data plane. As...
详细信息
The increasing global incidence of glioma tumors has raised significant healthcare concerns due to their high mortality rates. Traditionally, tumor diagnosis relies on visual analysis of medical imaging and invasive b...
详细信息
Artificial intelligence (AI) has emerged as a powerful tool in computational biology, where it is being used to analyze large datasets to detect difficult biological patterns. This has enabled the design of new drug m...
详细信息
Advancements in digital technologies make it easy to modify the content of digital images. Hence, ensuring digital images' integrity and authenticity is necessary to protect them against various attacks that manip...
详细信息
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i...
详细信息
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd datas
Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of *** biomedical corpus contains numerous complex long sentences and overlapping relational trip...
详细信息
Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of *** biomedical corpus contains numerous complex long sentences and overlapping relational triples,making most generalized domain joint modeling methods difficult to apply effectively in this *** a complex semantic environment in biomedical texts,in this paper,we propose a novel perspective to perform joint entity and relation extraction;existing studies divide the relation triples into several steps or ***,the three elements in the relation triples are interdependent and inseparable,so we regard joint extraction as a tripartite classification *** the same time,fromthe perspective of triple classification,we design amulti-granularity 2D convolution to refine the word pair table and better utilize the dependencies between biomedical word ***,we use a biaffine predictor to assist in predicting the labels of word pairs for relation *** model(MCTPL)Multi-granularity Convolutional Tokens Pairs of Labeling better utilizes the elements of triples and improves the ability to extract overlapping triples compared to previous ***,we evaluated our model on two publicly accessible *** experimental results show that our model’s ability to extract relation triples on the CPI dataset improves the F1 score by 2.34%compared to the current optimal *** the DDI dataset,the F1 value improves the F1 value by 1.68%compared to the current optimal *** model achieved state-of-the-art performance compared to other baseline models in biomedical text entity relation extraction.
In the era of digital transformation and increasing concerns regarding data privacy, the concept of Self-Sovereign Identity (SSI) has attained substantial recognization. SSI offers individuals greater control over the...
详细信息
暂无评论