Language-guided fashion image editing is challenging,as fashion image editing is local and requires high precision,while natural language cannot provide precise visual information for *** this paper,we propose LucIE,a...
详细信息
Language-guided fashion image editing is challenging,as fashion image editing is local and requires high precision,while natural language cannot provide precise visual information for *** this paper,we propose LucIE,a novel unsupervised language-guided local image editing method for fashion *** adopts and modifies recent text-to-image synthesis network,DF-GAN,as its ***,the synthesis backbone often changes the global structure of the input image,making local image editing *** increase structural consistency between input and edited images,we propose Content-Preserving Fusion Module(CPFM).Different from existing fusion modules,CPFM prevents iterative refinement on visual feature maps and accumulates additive modifications on RGB *** achieves local image editing explicitly with language-guided image segmentation and maskguided image blending while only using image and text *** on the DeepFashion dataset shows that LucIE achieves state-of-the-art *** with previous methods,images generated by LucIE also exhibit fewer *** provide visualizations and perform ablation studies to validate LucIE and the *** also demonstrate and analyze limitations of LucIE,to provide a better understanding of LucIE.
Dexterous robot manipulation has shone in complex industrial scenarios, where multiple manipulators, or fingers, cooperate to grasp and manipulate objects. When encountering multi-objective optimization with system co...
详细信息
Dexterous robot manipulation has shone in complex industrial scenarios, where multiple manipulators, or fingers, cooperate to grasp and manipulate objects. When encountering multi-objective optimization with system constraints in such scenarios, model predictive control(MPC) has demonstrated exceptional performance in complex multi-robot manipulation tasks involving multi-objective optimization with system constraints. However, in such scenarios, the substantial computational load required to solve the optimal control problem(OCP) at each triggering instant can lead to significant delays between state sampling and control application, hindering real-time performance. To address these challenges, this paper introduces a novel robust tube-based smooth MPC approach for two fundamental manipulation tasks: reaching a given target and tracking a reference trajectory. By predicting the successor state as the initial condition for imminent OCP solving, we can solve the forthcoming OCP ahead of time, alleviating delay effects. Additionally,we establish an upper bound for linearizing the original nonlinear system, reducing OCP complexity and enhancing response speed. Grounded in tube-based MPC theory, the recursive feasibility and closed-loop stability amidst constraints and disturbances are ensured. Empirical validation is provided through two numerical simulations and two real-world dexterous robot manipulation tasks, which shows that the seamless control input by our methods can effectively enhance the solving efficiency and control performance when compared to conventional time-triggered MPC strategies.
Various content-sharing platforms and social media are developed in recent times so that it is highly possible to spread fake news and misinformation. This kind of news may cause chaos and panic among people. The auto...
详细信息
XStorm, an FRP language for small-scale embedded systems, allows us to concisely describe state-dependent behaviors based on the state transition model. However, when we use different sets of peripheral devices depend...
详细信息
This study proposes a malicious code detection model DTL-MD based on deep transfer learning, which aims to improve the detection accuracy of existing methods in complex malicious code and data scarcity. In the feature...
详细信息
Images obtained from hyperspectral sensors provide information about the target area that extends beyond the visible portions of the electromagnetic ***,due to sensor limitations and imperfections during the image acq...
详细信息
Images obtained from hyperspectral sensors provide information about the target area that extends beyond the visible portions of the electromagnetic ***,due to sensor limitations and imperfections during the image acquisition and transmission phases,noise is introduced into the acquired image,which can have a negative impact on downstream analyses such as classification,target tracking,and spectral *** in hyperspectral images(HSI)is modelled as a combination from several sources,including Gaussian/impulse noise,stripes,and *** HSI restoration method for such a mixed noise model is ***,a joint optimisation framework is proposed for recovering hyperspectral data corrupted by mixed Gaussian-impulse noise by estimating both the clean data as well as the sparse/impulse noise ***,a hyper-Laplacian prior is used along both the spatial and spectral dimensions to express sparsity in clean image ***,to model the sparse nature of impulse noise,anℓ_(1)−norm over the impulse noise gradient is *** the proposed methodology employs two distinct priors,the authors refer to it as the hyperspectral dual prior(HySpDualP)*** the best of authors'knowledge,this joint optimisation framework is the first attempt in this *** handle the non-smooth and nonconvex nature of the generalℓ_(p)−norm-based regularisation term,a generalised shrinkage/thresholding(GST)solver is ***,an efficient split-Bregman approach is used to solve the resulting optimisation *** results on synthetic data and real HSI datacube obtained from hyperspectral sensors demonstrate that the authors’proposed model outperforms state-of-the-art methods,both visually and in terms of various image quality assessment metrics.
If adversaries were to obtain quantum computers in the future, their massive computing power would likely break existing security schemes. Since security is a continuous process, more substantial security schemes must...
详细信息
The earthquake early warning (EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is...
详细信息
The earthquake early warning (EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is extracted using the primary wave earthquake precursor signal and site-specific information. In Japan's earthquake magnitude dataset, there is a chance of a high imbalance concerning the earthquakes above strong impact. This imbalance causes a high prediction error while training advanced machine learning or deep learning models. In this work, Conditional Tabular Generative Adversarial Networks (CTGAN), a deep machine learning tool, is utilized to learn the characteristics of the first arrival of earthquake P-waves and generate a synthetic dataset based on this information. The result obtained using actual and mixed (synthetic and actual) datasets will be used for training the stacked ensemble magnitude prediction model, MagPred, designed specifically for this study. There are 13295, 3989, and 1710 records designated for training, testing, and validation. The mean absolute error of the test dataset for single station magnitude detection using early three, four, and five seconds of P wave are 0.41, 0.40, and 0.38 MJMA. The study demonstrates that the Generative Adversarial Networks (GANs) can provide a good result for single-station magnitude prediction. The study can be effective where less seismic data is available. The study shows that the machine learning method yields better magnitude detection results compared with the several regression models. The multi-station magnitude prediction study has been conducted on prominent Osaka, Off Fukushima, and Kumamoto earthquakes. Furthermore, to validate the performance of the model, an inter-region study has been performed on the earthquakes of the India or Nepal region. The study demonstrates that GANs can discover effective magnitude estimation compared with non-GAN-based methods. This has a high potential
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable *** predictivemodels for thyroid cancer enhan...
详细信息
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable *** predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce ***,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and *** paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present *** study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction *** the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the *** original dataset is used in trainingmachine learning models,and further used in generating SHAP values *** the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based *** new integrated dataset is used in re-training the machine learning *** new SHAP values generated from these models help in validating the contributions of feature sets in predicting *** conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making *** this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the *** study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of *** proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area un
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...
详细信息
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)*** proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the *** optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each *** the score values of alternatives are computed based on the aggregated *** alternative with the maximum score value is selected as a better *** applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning ***,we have validated the proposed approach with a numerical ***,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
暂无评论