This paper investigates the application of GradCAM, an explainable AI (XAI) technique, to enhance the transparency and precision of fingerprint authentication systems in forensics, particularly in detecting fingerprin...
详细信息
The growing field of urban monitoring has increasingly recognized the potential of utilizing autonomous technologies,particularly in drone *** deployment of intelligent drone swarms offers promising solutions for enha...
详细信息
The growing field of urban monitoring has increasingly recognized the potential of utilizing autonomous technologies,particularly in drone *** deployment of intelligent drone swarms offers promising solutions for enhancing the efficiency and scope of urban condition *** this context,this paper introduces an innovative algorithm designed to navigate a swarm of drones through urban landscapes for monitoring *** primary challenge addressed by the algorithm is coordinating drone movements from one location to another while circumventing obstacles,such as *** algorithm incorporates three key components to optimize the obstacle detection,navigation,and energy efficiency within a drone ***,the algorithm utilizes a method to calculate the position of a virtual leader,acting as a navigational beacon to influence the overall direction of the ***,the algorithm identifies observers within the swarm based on the current *** further refine obstacle avoidance,the third component involves the calculation of angular velocity using fuzzy *** approach considers the proximity of detected obstacles through operational rangefinders and the target’s location,allowing for a nuanced and adaptable computation of angular *** integration of fuzzy logic enables the drone swarm to adapt to diverse urban conditions dynamically,ensuring practical obstacle *** proposed algorithm demonstrates enhanced performance in the obstacle detection and navigation accuracy through comprehensive *** results suggest that the intelligent obstacle avoidance algorithm holds promise for the safe and efficient deployment of autonomous mobile drones in urban monitoring applications.
Industrial Internet of Things(IIoT)systems depend on a growing number of edge devices such as sensors,controllers,and robots for data collection,transmission,storage,and *** kind of malicious or abnormal function by e...
详细信息
Industrial Internet of Things(IIoT)systems depend on a growing number of edge devices such as sensors,controllers,and robots for data collection,transmission,storage,and *** kind of malicious or abnormal function by each of these devices can jeopardize the security of the entire ***,they can allow malicious software installed on end nodes to penetrate the *** paper presents a parallel ensemble model for threat hunting based on anomalies in the behavior of IIoT edge *** proposed model is flexible enough to use several state-of-the-art classifiers as the basic learner and efficiently classifies multi-class anomalies using the Multi-class AdaBoost and majority *** evaluations using a dataset consisting of multi-source normal records and multi-class anomalies demonstrate that our model outperforms existing approaches in terms of accuracy,F1 score,recall,and precision.
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease ...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease diagnosis has demonstrated commendable effectiveness in promptly diagnosing patients and curbing infection transmission. The study introduces a deep learning-based model tailored for COVID-19 detection, leveraging three prevalent medical imaging modalities: computed tomography (CT), chest X-ray (CXR), and Ultrasound. Various deep Transfer Learning Convolutional Neural Network-based (CNN) models have undergone assessment for each imaging modality. For each imaging modality, this study has selected the two most accurate models based on evaluation metrics such as accuracy and loss. Additionally, efforts have been made to prune unnecessary weights from these models to obtain more efficient and sparse models. By fusing these pruned models, enhanced performance has been achieved. The models have undergone rigorous training and testing using publicly available real-world medical datasets, focusing on classifying these datasets into three distinct categories: Normal, COVID-19 Pneumonia, and non-COVID-19 Pneumonia. The primary objective is to develop an optimized and swift model through strategies like Transfer Learning, Ensemble Learning, and reducing network complexity, making it easier for storage and transfer. The results of the trained network on test data exhibit promising outcomes. The accuracy of these models on the CT scan, X-ray, and ultrasound datasets stands at 99.4%, 98.9%, and 99.3%, respectively. Moreover, these models’ sizes have been substantially reduced and optimized by 51.93%, 38.00%, and 69.07%, respectively. This study proposes a computer-aided-coronavirus-detection system based on three standard medical imaging techniques. The intention is to assist radiologists in accurately and swiftly diagnosing the disease, especially during the screen
Graph Neural Networks (GNNs) have emerged as a widely used and effective method across various domains for learning from graph data. Despite the abundance of GNN variants, many struggle with effectively propagating me...
详细信息
Type 2 Diabetes Mellitus (T2DM) is a common chronic illness caused by variations in the secretion of insulin. T2DM will be treated early with the help of an early diagnosis reducing the risk of early death and control...
详细信息
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)a...
详细信息
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable *** data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network *** mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring *** unique determination of this study is the shortest path to reach *** the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static *** this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the *** methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide *** addition,a method of using MS scheduling for efficient data collection is *** simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
Using large language model to generate vehicle type recognition algorithm can reduce the burden of developers and realize the rapid development of projects. In this paper, LangChain large model interface provided by B...
详细信息
Nowadays, individuals and organizations are increasingly targeted by phishing attacks, so an accurate phishing detection system is required. Therefore, many phishing detection techniques have been proposed as well as ...
详细信息
Unmanned Aerial Vehicles (UAVs) have extensive applications such as logistics transportation and aerial photography. However, UAVs are sensitive to winds. Traditional control methods, such as proportional- integral-de...
详细信息
Unmanned Aerial Vehicles (UAVs) have extensive applications such as logistics transportation and aerial photography. However, UAVs are sensitive to winds. Traditional control methods, such as proportional- integral-derivative controllers, generally fail to work well when the strength and direction of winds are changing frequently. In this work deep reinforcement learning algorithms are combined with a domain randomization method to learn robust wind-resistant hovering policies. A novel reward function is designed to guide learning. This reward function uses a constant reward to maintain a continuous flight of a UAV as well as a weight of the horizontal distance error to ensure the stability of the UAV at altitude. A five-dimensional representation of actions instead of the traditional four dimensions is designed to strengthen the coordination of wings of a UAV. We theoretically explain the rationality of our reward function based on the theories of Q-learning and reward shaping. Experiments in the simulation and real-world application both illustrate the effectiveness of our method. To the best of our knowledge, it is the first paper to use reinforcement learning and domain randomization to explore the problem of robust wind-resistant hovering control of quadrotor UAVs, providing a new way for the study of wind-resistant hovering and flying of UAVs. IEEE
暂无评论