Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum...
详细信息
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.
Graph is a powerful sparse data structure that intuitively represents entities and their *** graph traversal algorithms such as Breadth-First Search(BFS),Single-Source Shortest Path(SSSP),PageRank,and Weakly Connected...
详细信息
Graph is a powerful sparse data structure that intuitively represents entities and their *** graph traversal algorithms such as Breadth-First Search(BFS),Single-Source Shortest Path(SSSP),PageRank,and Weakly Connected Components(WCC)have extensive applications in social network analysis,risk management for finance,and recommendation ***,graph processing in CPUs and GPUs is not very efficient due to its irregular memory *** people have proposed software approaches to speed up graph processing,such as PowerGraph,PowerLyra,and Shentu,which address load imbalance issues by replicating high-degree *** and GridGraph attempt to improve memory access locality by scanning the edge list of graphs while localizing the range of vertices accessed in a *** and Gemini provide adaptive dual compute modes(bottom-up and topdown),which are particularly effective for BFS-like algorithms such as BFS and ***,pure software approaches have their limitations,and it is desired to see how hardware could be employed to accelerate graph processing.
The study of gaze tracking is a significant research area in computer vision. It focuses on real-world applications and the interface between humans and computers. Recently, new eye-tracking applications have boosted ...
详细信息
Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of ***,there is a large performance gap between weakly supervised and fully supervised salient o...
详细信息
Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of ***,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background ***,an intuitive idea is to infer annotations that cover more complete object and background regions for *** this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent ***,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster ***,the same annotations for pixels with similar colours within each kernel neighbourhood was set *** experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of r...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of rice and have a substantial impact on the yield and quality of the crop. In recent times, deep learning methods have gained prominence in predicting rice leaf diseases. Despite the increasing use of these methods, there are notable limitations in existing approaches. These include a scarcity of extensive and diverse collections of leaf disease images, lower accuracy rates, higher time complexity, and challenges in real-time leaf disease detection. To address the limitations, we explicitly investigate various data augmentation approaches using different generative adversarial networks (GANs) for rice leaf disease detection. Along with the GAN model, advanced CNN-based classifiers have been applied to classify the images with improving data augmentation. Our approach involves employing various GANs to generate high-quality synthetic images. This strategy aims to tackle the challenges posed by limited and imbalanced datasets in the identification of leaf diseases. The key benefit of incorporating GANs in leaf disease detection lies in their ability to create synthetic images, effectively augmenting the dataset’s size, enhancing diversity, and reducing the risk of overfitting. For dataset augmentation, we used three distinct GAN architectures—namely simple GAN, CycleGAN, and DCGAN. Our experiments demonstrated that models utilizing the GAN-augmented dataset generally outperformed those relying on the non-augmented dataset. Notably, the CycleGAN architecture exhibited the most favorable outcomes, with the MobileNet model achieving an accuracy of 98.54%. These findings underscore the significant potential of GAN models in improving the performance of detection models for rice leaf diseases, suggesting their promising role in the future research within this doma
XStorm, an FRP language for small-scale embedded systems, allows us to concisely describe state-dependent behaviors based on the state transition model. However, when we use different sets of peripheral devices depend...
详细信息
Low earth orbit(LEO) satellite edge computing can overcome communication difficulties in harsh environments, which lack the support of terrestrial communication infrastructure. It is an indispensable option for achiev...
详细信息
Low earth orbit(LEO) satellite edge computing can overcome communication difficulties in harsh environments, which lack the support of terrestrial communication infrastructure. It is an indispensable option for achieving worldwide wireless communication coverage in the future. To improve the quality-of-service(QoS) for Internet-of-things(IoT) devices, we combine LEO satellite edge computing and ground communication systems to provide network services for IoT devices in harsh environments. We study the QoS-aware computation offloading(QCO) problem for IoT devices in LEO satellite edge computing. Then we investigate the computation offloading strategy for IoT devices that can minimize the total QoS cost of all devices while satisfying multiple constraints, such as the computing resource constraint, delay constraint, and energy consumption constraint. We formulate the QoSaware computation offloading problem as a game model named QCO game based on the non-cooperative competition game among IoT devices. We analyze the finite improvement property of the QCO game and prove that there is a Nash equilibrium for the QCO game. We propose a distributed QoS-aware computation offloading(DQCO) algorithm for the QCO game. Experimental results show that the DQCO algorithm can effectively reduce the total QoS cost of IoT devices.
In the development of linear quadratic regulator(LQR) algorithms, the Riccati equation approach offers two important characteristics——it is recursive and readily meets the existence condition. However, these attribu...
详细信息
In the development of linear quadratic regulator(LQR) algorithms, the Riccati equation approach offers two important characteristics——it is recursive and readily meets the existence condition. However, these attributes are applicable only to transformed singular systems, and the efficiency of the regulator may be undermined if constraints are violated in nonsingular versions. To address this gap, we introduce a direct approach to the LQR problem for linear singular systems, avoiding the need for any transformations and eliminating the need for regularity assumptions. To achieve this goal, we begin by formulating a quadratic cost function to derive the LQR algorithm through a penalized and weighted regression framework and then connect it to a constrained minimization problem using the Bellman's criterion. Then, we employ a dynamic programming strategy in a backward approach within a finite horizon to develop an LQR algorithm for the original system. To accomplish this, we address the stability and convergence analysis under the reachability and observability assumptions of a hypothetical system constructed by the pencil of augmented matrices and connected using the Hamiltonian diagonalization technique.
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...
详细信息
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation *** computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end *** of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud *** smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system *** address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog *** framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation *** FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud *** simulation-based executions,tasks are allocated to the nearest available nodes with minimum *** the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of *** successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
The widespread availability of GPS has opened up a whole new market that provides a plethora of location-based ***-based social networks have become very popular as they provide end users like us with several such ser...
详细信息
The widespread availability of GPS has opened up a whole new market that provides a plethora of location-based ***-based social networks have become very popular as they provide end users like us with several such services utilizing GPS through our ***,when users utilize these services,they inevitably expose personal information such as their ID and sensitive location to the *** to untrustworthy servers and malicious attackers with colossal background knowledge,users'personal information is at risk on these ***,many privacy-preserving solutions for protecting trajectories have significantly decreased utility after *** have come up with a new trajectory privacy protection solution that contraposes the area of interest for ***,Staying Points Detection Method based on Temporal-Spatial Restrictions(SPDM-TSR)is an interest area mining method based on temporal-spatial restrictions,which can clearly distinguish between staying and moving ***,our privacy protection mechanism focuses on the user's areas of interest rather than the entire ***,our proposed mechanism does not rely on third-party service providers and the attackers'background knowledge *** test our models on real datasets,and the results indicate that our proposed algorithm can provide a high standard privacy guarantee as well as data availability.
暂无评论