Background: Pneumonia is one of the leading causes of death and disability due to respiratory infections. The key to successful treatment of pneumonia is in its early diagnosis and correct classification. PneumoniaNet...
详细信息
In daily life, snail classification is an important mean to ensure food safety and prevent the occurrence of situations that toxic snails are mistakenly consumed. However, the current methods for snail classification ...
详细信息
Underwater target detection is an important part of marine exploration. However, in complex underwater environments due to factors like light absorption and scattering, as well as variations in water quality and clari...
详细信息
In recent years, the utilization of unmanned aerial vehicles (UAVs) for aerial target detection has gained significant attention due to their high-altitude perspective and maneuverability, which offer novel opportunit...
详细信息
Text Summarization is a process to abridge a long-size document into condensed form by comprising all the prime information and central theme. Researchers proposed numerous approaches for automatic text summarization,...
详细信息
Underwater target detection is an important method for detecting marine organisms. However, due to the image occlusion of underwater targets, blurred water quality, poor lighting conditions, small targets, and complex...
详细信息
Detecting plagiarism in documents is a well-established task in natural language processing (NLP). Broadly, plagiarism detection is categorized into two types (1) intrinsic: to check the whole document or all the pass...
详细信息
Detecting plagiarism in documents is a well-established task in natural language processing (NLP). Broadly, plagiarism detection is categorized into two types (1) intrinsic: to check the whole document or all the passages have been written by a single author;(2) extrinsic: where a suspicious document is compared with a given set of source documents to figure out sentences or phrases which appear in both documents. In the pursuit of advancing intrinsic plagiarism detection, this study addresses the critical challenge of intrinsic plagiarism detection in Urdu texts, a language with limited resources for comprehensive language models. Acknowledging the absence of sophisticated large language models (LLMs) tailored for Urdu language, this study explores the application of various machine learning, deep learning, and language models in a novel framework. A set of 43 stylometry features at six granularity levels was meticulously curated, capturing linguistic patterns indicative of plagiarism. The selected models include traditional machine learning approaches such as logistic regression, decision trees, SVM, KNN, Naive Bayes, gradient boosting and voting classifier, deep learning approaches: GRU, BiLSTM, CNN, LSTM, MLP, and large language models: BERT and GPT-2. This research systematically categorizes these features and evaluates their effectiveness, addressing the inherent challenges posed by the limited availability of Urdu-specific language models. Two distinct experiments were conducted to evaluate the impact of the proposed features on classification accuracy. In experiment one, the entire dataset was utilized for classification into intrinsic plagiarized and non-plagiarized documents. Experiment two categorized the dataset into three types based on topics: moral lessons, national celebrities, and national events. Both experiments are thoroughly evaluated through, a fivefold cross-validation analysis. The results show that the random forest classifier achieved an ex
People who have trouble communicating verbally are often dependent on sign language,which can be difficult for most people to understand,making interaction with them a difficult *** Sign Language Recognition(SLR)syste...
详细信息
People who have trouble communicating verbally are often dependent on sign language,which can be difficult for most people to understand,making interaction with them a difficult *** Sign Language Recognition(SLR)system takes an input expression from a hearing or speaking-impaired person and outputs it in the form of text or voice to a normal *** existing study related to the Sign Language Recognition system has some drawbacks,such as a lack of large datasets and datasets with a range of backgrounds,skin tones,and *** research efficiently focuses on Sign Language Recognition to overcome previous *** importantly,we use our proposed Convolutional Neural Network(CNN)model,“ConvNeural”,in order to train our ***,we develop our own datasets,“BdSL_OPSA22_STATIC1”and“BdSL_OPSA22_STATIC2”,both of which have ambiguous backgrounds.“BdSL_OPSA22_STATIC1”and“BdSL_OPSA22_STATIC2”both include images of Bangla characters and numerals,a total of 24,615 and 8437 images,***“ConvNeural”model outperforms the pre-trained models with accuracy of 98.38%for“BdSL_OPSA22_STATIC1”and 92.78%for“BdSL_OPSA22_STATIC2”.For“BdSL_OPSA22_STATIC1”dataset,we get precision,recall,F1-score,sensitivity and specificity of 96%,95%,95%,99.31%,and 95.78%***,in case of“BdSL_OPSA22_STATIC2”dataset,we achieve precision,recall,F1-score,sensitivity and specificity of 90%,88%,88%,100%,and 100%respectively.
In recent years, remote sensing object detection has become a research hotspot in computer vision tasks. However, previous approaches for remote sensing object detection often overlook the rich contextual information ...
详细信息
As deep learning advances, neural network technologies are increasingly penetrating the field of steel surface defect detection. To tackle the challenges of low accuracy and inadequate quality, we introduce CMS-YOLOv8...
详细信息
暂无评论