Advancements in Natural Language Processing and Deep Learning techniques have significantly pro-pelled the automation of Legal Judgment Prediction,achieving remarkable progress in legal *** of the existing research wo...
详细信息
Advancements in Natural Language Processing and Deep Learning techniques have significantly pro-pelled the automation of Legal Judgment Prediction,achieving remarkable progress in legal *** of the existing research works on Legal Judgment Prediction(LJP)use traditional optimization algorithms in deep learning techniques falling into local *** research article focuses on using the modified Pelican Optimization method which mimics the collective behavior of Pelicans in the exploration and exploitation phase during cooperative food ***,the selection of search agents within a boundary is done randomly,which increases the time required to achieve global *** address this,the proposed Chaotic Opposition Learning-based Pelican Optimization(COLPO)method incorporates the concept of Opposition-Based Learning combined with a chaotic cubic function,enabling deterministic selection of random numbers and reducing the number of iterations needed to reach global ***,the LJP approach in this work uses improved semantic similarity and entropy features to train a hybrid classifier combining Bi-GRU and Deep *** output scores are fused using improved score level fusion to boost prediction *** proposed COLPO method experiments with real-time Madras High Court criminal cases(Dataset 1)and the Supreme Court of India database(Dataset 2),and its performance is compared with nature-inspired algorithms such as Sparrow Search Algorithm(SSA),COOT,Spider Monkey Optimization(SMO),Pelican Optimization Algorithm(POA),as well as baseline classifier models and transformer neural *** results show that the proposed hybrid classifier with COLPO outperforms other cutting-edge LJP algorithms achieving 93.4%and 94.24%accuracy,respectively.
Crop yield Prediction based on environmental, soil, water, and crop parameters has been an active area of research in agriculture. Many studies have shown that these parameters can have a significant impact on crop yi...
详细信息
Cybersecurity is crucial in today’s interconnected world, as digital technologies are increasingly used in various sectors. The risk of cyberattacks targeting financial, military, and political systems has increased ...
详细信息
Object recognition is significantly improving, allowing us to better understand and extract information from images. This paper presents a novel method for 3D scene reconstruction using a single RGB image, based on a ...
详细信息
Cloud storage is essential for managing user data to store and retrieve from the distributed data *** storage service is distributed as pay a service for accessing the size to collect the *** to the massive amount of ...
详细信息
Cloud storage is essential for managing user data to store and retrieve from the distributed data *** storage service is distributed as pay a service for accessing the size to collect the *** to the massive amount of data stored in the data centre containing similar information and file structures remaining in multi-copy,duplication leads to increase storage *** potential deduplication system doesn’t make efficient data reduction because of inaccuracy in finding similar data *** creates a complex nature to increase the storage consumption under *** resolve this problem,this paper proposes an efficient storage reduction called Hash-Indexing Block-based Deduplication(HIBD)based on Segmented Bind Linkage(SBL)Methods for reducing storage in a cloud ***,preprocessing is done using the sparse augmentation ***,the preprocessed files are segmented into blocks to make *** block of the contents is compared with other files through Semantic Content Source Deduplication(SCSD),which identifies the similar content presence between the *** on the content presence count,the Distance Vector Weightage Correlation(DVWC)estimates the document similarity weight,and related files are grouped into a ***,the segmented bind linkage compares the document to find duplicate content in the cluster using similarity weight based on the coefficient match *** implementation helps identify the data redundancy efficiently and reduces the service cost in distributed cloud storage.
In today’s growing modern world environment,as human food activities are changing,it is affecting human health,thus leading to diseases like *** is a complex disease with many subtypes that affect human health withou...
详细信息
In today’s growing modern world environment,as human food activities are changing,it is affecting human health,thus leading to diseases like *** is a complex disease with many subtypes that affect human health without premature treatment and cause *** the analysis of early diagnosis and prognosis of cancer studies can improve clinical management by analyzing various features of observa-tion,which has become necessary to classify the type in cancer *** research needs importance to organize the risk of the cancer patients based on data analysis to predict the result of premature *** paper introduces a Maximal Region-Based Candidate Feature Selection(MRCFS)for early risk diagnosing using Soft-Max Feed Forward Neural Classification(SMF2NC)to solve the above *** predictive model is based on a different relational feature learning model,which is possessed to candidate selection to reduce the *** redundant features are processed marginal weight rates for observing similar features’variants and the absolute *** neural hidden layers are trained using the Sigmoid Activation Function(SAF)to create the logical condition for feed-forward ***,the maximal features are introduced to invite a deep neural network con-structed on the Feed Forward Recurrent Neural Network(FFRNN).The classifier produces higher classification accuracy than the previous methods and observes the cancer detection,which is recommended for early diagnosis.
With the rapid growth of internet usage,a new situation has been created that enables practicing *** has increased over the past decade,and it has the same adverse effects as face-to-face bullying,like anger,sadness,a...
详细信息
With the rapid growth of internet usage,a new situation has been created that enables practicing *** has increased over the past decade,and it has the same adverse effects as face-to-face bullying,like anger,sadness,anxiety,and *** the anonymity people get on the internet,they tend to bemore aggressive and express their emotions freely without considering the effects,which can be a reason for the increase in cyberbullying and it is the main motive behind the current *** study presents a thorough background of cyberbullying and the techniques used to collect,preprocess,and analyze the ***,a comprehensive review of the literature has been conducted to figure out research gaps and effective techniques and practices in cyberbullying detection in various languages,and it was deduced that there is significant room for improvement in the Arabic *** a result,the current study focuses on the investigation of shortlisted machine learning algorithms in natural language processing(NLP)for the classification of Arabic datasets duly collected from Twitter(also known as X).In this regard,support vector machine(SVM),Naive Bayes(NB),Random Forest(RF),Logistic regression(LR),Bootstrap aggregating(Bagging),Gradient Boosting(GBoost),Light Gradient Boosting Machine(LightGBM),Adaptive Boosting(AdaBoost),and eXtreme Gradient Boosting(XGBoost)were shortlisted and investigated due to their effectiveness in the similar ***,the scheme was evaluated by well-known performance measures like accuracy,precision,Recall,and ***,XGBoost exhibited the best performance with 89.95%accuracy,which is promising compared to the state-of-the-art.
computer vision methods for depth estimation usually use simple camera models with idealized optics. For modern machine learning approaches, this creates an issue when attempting to train deep networks with simulated ...
详细信息
computer vision methods for depth estimation usually use simple camera models with idealized optics. For modern machine learning approaches, this creates an issue when attempting to train deep networks with simulated data, especially for focus-sensitive tasks like Depth-from-Focus. In this work, we investigate the domain gap caused by off-axis aberrations that will affect the decision of the best-focused frame in a focal stack. We then explore bridging this domain gap through aberration-aware training (AAT). Our approach involves a lightweight network that models lens aberrations at different positions and focus distances, which is then integrated into the conventional network training pipeline. We evaluate the generality of network models on both synthetic and real-world data. The experimental results demonstrate that the proposed AAT scheme can improve depth estimation accuracy without fine-tuning the model for different datasets. The code will be available in ***/vccimaging/Aberration-Aware-Depth-from-Focus. Author
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data *** utilizes on-demand resource provisioni...
详细信息
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data *** utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization *** this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud *** capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource *** is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into *** addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS *** further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM *** results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for *** statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.
Plant diseases are one of the major contributors to economic loss in the agriculture industry worldwide. Detection of disease at early stages can help in the reduction of this loss. In recent times, a lot of emphasis ...
详细信息
暂无评论