As an important task in emotion analysis, Multimodal Emotion-Cause Pair Extraction in conversations (MECPE) aims to extract all the emotion-cause utterance pairs from a conversation. However, there are two shortcoming...
详细信息
With the vigorous development of cloud computing, most organizations have shifted their data and applications to the cloud environment for storage, computation, and sharing purposes. During storage and data sharing ac...
详细信息
With the vigorous development of cloud computing, most organizations have shifted their data and applications to the cloud environment for storage, computation, and sharing purposes. During storage and data sharing across the participating entities, a malicious agent may gain access to outsourced data from the cloud environment. A malicious agent is an entity that deliberately breaches the data. This information accessed might be misused or revealed to unauthorized parties. Therefore, data protection and prediction of malicious agents have become a demanding task that needs to be addressed appropriately. To deal with this crucial and challenging issue, this paper presents a Malicious Agent Identification-based Data Security (MAIDS) Model which utilizes XGBoost machine learning classification algorithm for securing data allocation and communication among different participating entities in the cloud system. The proposed model explores and computes intended multiple security parameters associated with online data communication or transactions. Correspondingly, a security-focused knowledge database is produced for developing the XGBoost Classifier-based Malicious Agent Prediction (XC-MAP) unit. Unlike the existing approaches, which only identify malicious agents after data leaks, MAIDS proactively identifies malicious agents by examining their eligibility for respective data access. In this way, the model provides a comprehensive solution to safeguard crucial data from both intentional and non-intentional breaches, by granting data to authorized agents only by evaluating the agent’s behavior and predicting the malicious agent before granting data. The performance of the proposed model is thoroughly evaluated by accomplishing extensive experiments, and the results signify that the MAIDS model predicts the malicious agents with high accuracy, precision, recall, and F1-scores up to 95.55%, 95.30%, 95.50%, and 95.20%, respectively. This enormously enhances the system’s sec
Self-supervised learning empowers models to learn from unlabeled data, making it a popular technique for addressing the challenge of insufficient labeled data. In this paper, we combine the issue of cold items lacking...
详细信息
In today’s rapidly evolving landscape of communication technologies,ensuring the secure delivery of sensitive data has become an essential *** overcome these difficulties,different steganography and data encryption m...
详细信息
In today’s rapidly evolving landscape of communication technologies,ensuring the secure delivery of sensitive data has become an essential *** overcome these difficulties,different steganography and data encryption methods have been proposed by researchers to secure *** of the proposed steganography techniques achieve higher embedding capacities without compromising visual imperceptibility using LSB *** this work,we have an approach that utilizes a combinationofMost SignificantBit(MSB)matching andLeast Significant Bit(LSB)*** proposed algorithm divides confidential messages into pairs of bits and connects them with the MSBs of individual pixels using pair matching,enabling the storage of 6 bits in one pixel by modifying a maximum of three *** proposed technique is evaluated using embedding capacity and Peak Signal-to-Noise Ratio(PSNR)score,we compared our work with the Zakariya scheme the results showed a significant increase in data concealment *** achieved results of ourwork showthat our algorithmdemonstrates an improvement in hiding capacity from11%to 22%for different data samples while maintaining a minimumPeak Signal-to-Noise Ratio(PSNR)of 37 *** findings highlight the effectiveness and trustworthiness of the proposed algorithm in securing the communication process and maintaining visual integrity.
BACKGROUND Wireless capsule endoscopy(WCE)has become an important noninvasive and portable tool for diagnosing digestive tract diseases and has been propelled by advancements in medical imaging ***,the complexity of t...
详细信息
BACKGROUND Wireless capsule endoscopy(WCE)has become an important noninvasive and portable tool for diagnosing digestive tract diseases and has been propelled by advancements in medical imaging ***,the complexity of the digestive tract structure,and the diversity of lesion types,results in different sites and types of lesions distinctly appearing in the images,posing a challenge for the accurate identification of digestive tract *** To propose a deep learning-based lesion detection model to automatically identify and accurately label digestive tract lesions,thereby improving the diagnostic efficiency of doctors,and creating significant clinical application *** In this paper,we propose a neural network model,WCE_Detection,for the accurate detection and classification of 23 classes of digestive tract lesion ***,since multicategory lesion images exhibit various shapes and scales,a multidetection head strategy is adopted in the object detection network to increase the model's robustness for multiscale lesion ***,a bidirectional feature pyramid network(BiFPN)is introduced,which effectively fuses shallow semantic features by adding skip connections,significantly reducing the detection error *** the basis of the above,we utilize the Swin Transformer with its unique self-attention mechanism and hierarchical structure in conjunction with the BiFPN feature fusion technique to enhance the feature representation of multicategory lesion *** The model constructed in this study achieved an mAP50 of 91.5%for detecting 23 *** than eleven single-category lesions achieved an mAP50 of over 99.4%,and more than twenty lesions had an mAP50 value of over 80%.These results indicate that the model outperforms other state-of-the-art models in the end-to-end integrated detection of human digestive tract lesion *** The deep learning-based object detection network detects multiple digestive tract lesi
Breast cancer is the primary cause of death among women globally, and it is becoming more prevalent. Early detection and precise diagnosis of breast cancer can reduce the disease’s mortality rate. Recent advances in ...
详细信息
This study investigates a safe reinforcement learning algorithm for grid-forming(GFM)inverter based frequency *** guarantee the stability of the inverter-based resource(IBR)system under the learned control policy,a mo...
详细信息
This study investigates a safe reinforcement learning algorithm for grid-forming(GFM)inverter based frequency *** guarantee the stability of the inverter-based resource(IBR)system under the learned control policy,a modelbased reinforcement learning(MBRL)algorithm is combined with Lyapunov approach,which determines the safe region of states and *** obtain near optimal control policy,the control performance is safely improved by approximate dynamic programming(ADP)using data sampled from the region of attraction(ROA).Moreover,to enhance the control robustness against parameter uncertainty in the inverter,a Gaussian process(GP)model is adopted by the proposed algorithm to effectively learn system dynamics from *** simulations validate the effectiveness of the proposed algorithm.
The rapid evolution of wireless technologies and the growing complexity of network infrastructures necessitate a paradigm shift in how communication networks are designed,configured,and managed. Recent advancements in...
详细信息
The rapid evolution of wireless technologies and the growing complexity of network infrastructures necessitate a paradigm shift in how communication networks are designed,configured,and managed. Recent advancements in large language models (LLMs) have sparked interest in their potential to revolutionize wireless communication systems. However, existing studies on LLMs for wireless systems are limited to a direct application for telecom language understanding. To empower LLMs with knowledge and expertise in the wireless domain, this paper proposes WirelessLLM, a comprehensive framework for adapting and enhancing LLMs to address the unique challenges and requirements of wireless communication networks. We first identify three foundational principles that underpin WirelessLLM:knowledge alignment, knowledge fusion, and knowledge evolution. Then,we investigate the enabling technologies to build WirelessLLM, including prompt engineering, retrieval augmented generation, tool usage, multi-modal pre-training, and domain-specific fine-tuning. Moreover, we present three case studies to demonstrate the practical applicability and benefits of WirelessLLM for solving typical problems in wireless networks. Finally, we conclude this paper by highlighting key challenges and outlining potential avenues for future research.
Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can...
详细信息
Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can potentially address these problems by allowing systems trained on labelled datasets from the source domain(including less expensive synthetic domain)to be adapted to a novel target *** conventional approach involves automatic extraction and alignment of the representations of source and target domains *** limitation of this approach is that it tends to neglect the differences between classes:representations of certain classes can be more easily extracted and aligned between the source and target domains than others,limiting the adaptation over all ***,we address:this problem by introducing a Class-Conditional Domain Adaptation(CCDA)*** incorporates a class-conditional multi-scale discriminator and class-conditional losses for both segmentation and ***,they measure the segmentation,shift the domain in a classconditional manner,and equalize the loss over *** results demonstrate that the performance of our CCDA method matches,and in some cases,surpasses that of state-of-the-art methods.
Using robots for tomato truss harvesting represents a promising approach to agricultural production. However, incomplete acquisition of perception information and clumsy operations often result in low harvest success ...
详细信息
暂无评论