While spin-orbit interaction has been extensively studied,few investigations have reported on the interaction between orbital angular momenta(OAMs).In this work,we study a new type of orbit-orbit coupling between the ...
详细信息
While spin-orbit interaction has been extensively studied,few investigations have reported on the interaction between orbital angular momenta(OAMs).In this work,we study a new type of orbit-orbit coupling between the longitudinal OAM and the transverse OAM carried by a three-dimensional(3D)spatiotemporal optical vortex(STOV)in the process of tight *** 3D STOV possesses orthogonal OAMs in the x-y,t-x,and y-t planes,and is preconditioned to overcome the spatiotemporal astigmatism effect.x,y,and t are the axes in the spatiotemporal *** corresponding focused wavepacket is calculated by employing the Debye diffraction theory,showing that a phase singularity ring is generated by the interactions among the transverse and longitudinal vortices in the highly confined *** Fourier-transform decomposition of the Debye integral is employed to analyze the mechanism of the orbit-orbit *** is the first revelation of coupling between the longitudinal OAM and the transverse OAM,paving the way for potential applications in optical trapping,laser machining,nonlinear light-matter interactions,and more.
This paper presents a novel medical imaging framework, Efficient Parallel Deep Transfer SubNet+-based Explainable Model (EPDTNet + -EM), designed to improve the detection and classification of abnormalities in medical...
详细信息
A well-documented architecture can greatly improve comprehension and maintainability. However, shorter release cycles and quick delivery patterns results in negligence of architecture. In such situations, the architec...
详细信息
Serverless computing has shifted cloud server management responsibilities away from end users and towards service providers. Serverless computing offers greater scalability, flexibility, ease of deployment, and cost-e...
详细信息
Online offensive behaviour continues to rise with the increasing popularity and use of social media. Various techniques have been used to address this issue. However, most existing studies consider offensive content i...
详细信息
Deep neural networks have played a vital role in developing automated methods for addressing medical image segmentation. However, their reliance on labeled data impedes the practicability. Semi-Supervised learning is ...
详细信息
Safety equipment detection is an important application of object detection, receiving widespread attention in fields such as smart construction sites and video surveillance. Significant progress has been made in objec...
详细信息
Background: Emotion is a strong feeling such as love, anger, fear, etc. Emotion can be recognized in two ways, i.e., External expression and Biomedical data-based. Nowadays, various research is occurring on emotion cl...
详细信息
Background: Emotion is a strong feeling such as love, anger, fear, etc. Emotion can be recognized in two ways, i.e., External expression and Biomedical data-based. Nowadays, various research is occurring on emotion classification with biomedical data. Aim: One of the most current studies in the medical sector, gaming-based applications, education sector, and many other domains is EEG-based emotion identification. The existing research on emotion recognition was published using models like KNN, RF Ensemble, SVM, CNN, and LSTM on biomedical EEG data. In general, only a few works have been published on ensemble or concatenation models for emotion recognition on EEG data and achieved better results than individual ones or a few machine learning approaches. Various papers have observed that CNN works better than other approaches for extracting features from the dataset, and LSTM works better on the sequence data. Methods: Our research is based on emotion recognition using EEG data, a mixed-model deep learning methodology, and its comparison with a machine learning mixed-model methodology. In this study, we introduced a mixed model using CNN and LSTM that classifies emotions in valence and arousal on the DEAP dataset with 14 channels across 32 people. Result and Discussion: We then compared it to SVM, KNN, and RF Ensemble, and concatenated these models with it. First preprocessed the raw data, then checked emotion classification using SVM, KNN, RF Ensemble, CNN, and LSTM individually. After that with the mixed model of CNN-LSTM, and SVM-KNN-RF Ensemble results are compared. Proposed model results have better accuracy as 80.70% in valence than individual ones with CNN, LSTM, SVM, KNN, RF Ensemble and concatenated models of SVM, KNN and RF Ensemble. Conclusion: Overall, this paper concludes a powerful technique for processing a range of EEG data is the combination of CNNs and LSTMs. Ensemble approach results show better performance in the case of valence at 80.70% and 78.24
Background: Human physical activity recognition is challenging in various research eras, such as healthcare, surveillance, senior monitoring, athletics, and rehabilitation. The use of various sensors has attracted out...
详细信息
The increasing global incidence of glioma tumors has raised significant healthcare concerns due to their high mortality rates. Traditionally, tumor diagnosis relies on visual analysis of medical imaging and invasive b...
详细信息
暂无评论