In the era of digital transformation and increasing concerns regarding data privacy, the concept of Self-Sovereign Identity (SSI) has attained substantial recognization. SSI offers individuals greater control over the...
详细信息
Various organizations store data online rather than on physical *** the number of user’s data stored in cloud servers increases,the attack rate to access data from cloud servers also *** researchers worked on differe...
详细信息
Various organizations store data online rather than on physical *** the number of user’s data stored in cloud servers increases,the attack rate to access data from cloud servers also *** researchers worked on different algorithms to protect cloud data from replay *** of the papers used a technique that simultaneously detects a full-message and partial-message replay *** study presents the development of a TKN(Text,Key and Name)cryptographic algorithm aimed at protecting data from replay *** program employs distinct ways to encrypt plain text[P],a user-defined Key[K],and a Secret Code[N].The novelty of the TKN cryptographic algorithm is that the bit value of each text is linked to another value with the help of the proposed algorithm,and the length of the cipher text obtained is twice the length of the original *** the scenario that an attacker executes a replay attack on the cloud server,engages in cryptanalysis,or manipulates any data,it will result in automated modification of all associated values inside the *** mechanism has the benefit of enhancing the detectability of replay ***,the attacker cannot access data not included in any of the papers,regardless of how effective the attack strategy *** the end of paper,the proposed algorithm’s novelty will be compared with different algorithms,and it will be discussed how far the proposed algorithm is better than all other algorithms.
Many people all around the world suffer from heart disease, which is regarded as a severe illness. In healthcare, especially cardiology, it is crucial to accurately and quickly diagnose cardiac problems. In this resea...
详细信息
The agriculture industry's production and food quality have been impacted by plant leaf diseases in recent years. Hence, it is vital to have a system that can automatically identify and diagnose diseases at an ini...
详细信息
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management *** has become a promi...
详细信息
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management *** has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and ***,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial *** examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong ***,the security of AI models for the digital communication signals identification is the premise of its efficient and credible *** this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial *** we present more detailed adversarial indicators to evaluate attack and defense ***,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.
Gradient compression is a promising approach to alleviating the communication bottleneck in data parallel deep neural network (DNN) training by significantly reducing the data volume of gradients for synchronization. ...
详细信息
Gradient compression is a promising approach to alleviating the communication bottleneck in data parallel deep neural network (DNN) training by significantly reducing the data volume of gradients for synchronization. While gradient compression is being actively adopted by the industry (e.g., Facebook and AWS), our study reveals that there are two critical but often overlooked challenges: 1) inefficient coordination between compression and communication during gradient synchronization incurs substantial overheads, and 2) developing, optimizing, and integrating gradient compression algorithms into DNN systems imposes heavy burdens on DNN practitioners, and ad-hoc compression implementations often yield surprisingly poor system performance. In this paper, we propose a compression-aware gradient synchronization architecture, CaSync, which relies on flexible composition of basic computing and communication primitives. It is general and compatible with any gradient compression algorithms and gradient synchronization strategies and enables high-performance computation-communication pipelining. We further introduce a gradient compression toolkit, CompLL, to enable efficient development and automated integration of on-GPU compression algorithms into DNN systems with little programming burden. Lastly, we build a compression-aware DNN training framework HiPress with CaSync and CompLL. HiPress is open-sourced and runs on mainstream DNN systems such as MXNet, TensorFlow, and PyTorch. Evaluation via a 16-node cluster with 128 NVIDIA V100 GPUs and a 100 Gbps network shows that HiPress improves the training speed over current compression-enabled systems (e.g., BytePS-onebit, Ring-DGC and PyTorch-PowerSGD) by 9.8%-69.5% across six popular DNN models. IEEE
In the enormous field of Natural Language Processing (NLP), deciphering the intended significance of a word among a multitude of possibilities is referred to as word sense disambiguation. This process is essential for...
详细信息
Regression testing of software systems is an important and critical activity yet expensive and resource-intensive. An approach to enhance its efficiency is Regression Test Selection (RTS), which selectively re-execute...
详细信息
Regression testing of software systems is an important and critical activity yet expensive and resource-intensive. An approach to enhance its efficiency is Regression Test Selection (RTS), which selectively re-executes a subset of relevant tests that are impacted by code modifications. Previous studies on static and dynamic RTS for Java software have shown that selecting tests at the class level is more effective than using finer granularities like methods or statements. Nevertheless, RTS at the package level, which is a coarser granularity than class level, has not been thoroughly investigated or evaluated for Java projects. To address this gap, we propose PKRTS, a static package-level RTS approach that utilizes the structural dependencies of the software system under test to construct a package-level dependency graph. PKRTS analyzes dependencies in the graph and identifies relevant tests that can reach modified packages, i.e., packages containing altered classes. In contrast to conventional static RTS techniques, PKRTS implicitly considers dynamic dependencies, such as Java reflection and virtual method calls, among classes belonging to the same package by treating all those classes as a single cohesive node in the dependency graph. We evaluated PKRTS on 885 revisions of 9 open-source Java projects, with its performance compared to Ekstazi, a state-of-the-art dynamic class-level approach, and STARTS, a state-of-the-art static class-level approach. We used Ekstazi as the baseline to measure the safety and precision violations of PKRTS and STARTS. The results indicated that PKRTS outperformed static class-level RTS in terms of safety violation, which measures the extent to which relevant test cases are missed. PKRTS showed an average safety violation of 2.29% compared to 5.94% safety violation of STARTS. Despite this, PKRTS demonstrated lower precision violation and lower reduction in test suite size than class-level RTS, as it selects higher number of irrelevant te
This research work focuses on food recognition, especially, the identification of the ingredients from food images. Here, the developed model includes two stages namely: 1) feature extraction;2) classification. Initia...
详细信息
Skin cancer,a severe health threat,can spread rapidly if ***,early detection can lead to an advanced and efficient diagnosis,thus reducing *** classification techniques analyse extensive skin image datasets,identifyin...
详细信息
Skin cancer,a severe health threat,can spread rapidly if ***,early detection can lead to an advanced and efficient diagnosis,thus reducing *** classification techniques analyse extensive skin image datasets,identifying patterns and anomalies without prior labelling,facilitating early detection and effective diagnosis and potentially saving *** this study,the authors aim to explore the potential of unsupervised learning methods in classifying different types of skin lesions in dermatoscopic *** authors aim to bridge the gap in dermatological research by introducing innovative techniques that enhance image quality and improve feature *** achieve this,enhanced super-resolution generative adversarial networks(ESRGAN)was fine-tuned to strengthen the resolution of skin lesion images,making critical features more *** authors extracted histogram features to capture essential colour characteristics and used the Davies-Bouldin index and silhouette score to determine optimal ***-tuned k-means clustering with Euclidean distance in the histogram feature space achieved 87.77% and 90.5% test accuracies on the ISIC2019 and HAM10000 datasets,*** unsupervised approach effectively categorises skin lesions,indicating that unsupervised learning can significantly advance dermatology by enabling early detection and classification without extensive manual annotation.
暂无评论