In today’s digital era, the security of sensitive data such as Aadhaar data is of utmost importance. To ensure the privacy and integrity of this data, a conceptual framework is proposed that employs the Diffie-Hellma...
详细信息
Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle *** and propagation processes are illustrated for pentadisperse and triadisperse particle systems,*** these proce...
详细信息
Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle *** and propagation processes are illustrated for pentadisperse and triadisperse particle systems,*** these processes,particles involved in the avalanche grow slowly in the early stage and explosively in the later stage,which is clearly different from the continuous and steady growth trend in the monodisperse *** examining the avalanche propagation,the number growth of particles involved in the avalanche and the slope of the number growth,the initial state can be divided into three stages:T1(nucleation stage),T2(propagation stage),T3(overall avalanche stage).We focus on the characteristics of the avalanche in the T2 stage,and find that propagation distances increase almost linearly in both axial and radial directions in polydisperse *** also consider the distribution characteristics of the average coordination number and average velocity for the moving *** results support that the polydisperse particle systems are more stable in the T2 stage.
Deep neural networks (DNNs) are crucial in autonomous driving systems (ADSs) for tasks like steering control, but model inaccuracies, biased training data, and incorrect runtime parameters can compromise their reliabi...
详细信息
Deep neural networks (DNNs) are crucial in autonomous driving systems (ADSs) for tasks like steering control, but model inaccuracies, biased training data, and incorrect runtime parameters can compromise their reliability. Metamorphic testing (MT) enhances reliability by generating follow-up tests from mutated DNN source inputs, identifying inconsistencies as defects. Various MT techniques for ADSs include generative/transfer models, neuron-based coverage maximization, and adaptive test selection. Despite these efforts, significant challenges remain, including the ambiguity of neuron coverage’s correlation with misbehaviour detection, a lack of focus on DNN critical pathways, inadequate use of search-based methods, and the absence of an integrated method that effectively selects sources and generates follow-ups. This paper addresses such challenges by introducing DeepDomain, a grey-box multi-objective test generation approach for DNN models. It involves adaptively selecting diverse source inputs and generating domain-oriented follow-up tests. Such follow-ups explore critical pathways, extracted by neuron contribution, with broader coverage compared to their source tests (inter-behavioural domain) and attaining high neural boundary coverage of the misbehaviour regions detected in previous follow-ups (intra-behavioural domain). An empirical evaluation of the proposed approach on three DNN models used in the Udacity self-driving car challenge, and 18 different MRs demonstrates that relying on behavioural domain adequacy is a more reliable indicator than coverage criteria for effectively guiding the testing of DNNs. Additionally, DeepDomain significantly outperforms selected baselines in misbehaviour detection by up to 94 times, fault-revealing capability by up to 79%, output diversity by 71%, corner-case detection by up to 187 times, identification of robustness subdomains of MRs by up to 33 percentage points, and naturalness by two times. The results confirm that stat
Brain tumors are one of the deadliest diseases and require quick and accurate methods of detection. Finding the optimum image for research goals is the first step in optimizing MRI images for pre- and post-processing....
详细信息
Breast cancer poses a threat to women’s health and contributes to an increase in mortality rates. Mammography has proven to be an effective tool for the early detection of breast cancer. However, it faces many challe...
详细信息
Breast cancer poses a threat to women’s health and contributes to an increase in mortality rates. Mammography has proven to be an effective tool for the early detection of breast cancer. However, it faces many challenges in early breast cancer detection due to poor image quality, traditional segmentation, and feature extraction. Therefore, this work addresses these issues and proposes an attention-based backpropagation convolutional neural network (ABB-CNN) to detect breast cancer from mammogram images more accurately. The proposed work includes image enhancement, reinforcement learning-based semantic segmentation (RLSS), and multiview feature extraction and classification. The image enhancement is performed by removing noise and artefacts through a hybrid filter (HF), image scaling through a pixel-based bilinear interpolation (PBI), and contrast enhancement through an election-based optimization (EO) algorithm. In addition, the RLSS introduces intelligent segmentation by utilizing a deep Q network (DQN) to segment the region of interest (ROI) strategically. Moreover, the proposed ABB-CNN facilitates multiview feature extraction from the segmented region to classify the mammograms into normal, malignant, and benign classes. The proposed framework is evaluated on the collected and the digital database for screening mammography (DDSM) datasets. The proposed framework provides better outcomes in terms of accuracy, sensitivity, specificity, precision, f-measure, false-negative rate (FNR) and area under the curve (AUC). This work achieved (99.20%, 99.35%), (99.56%, 99.66%), (98.96%, 98.99%), (99.05%, 99.12%), (0.44%, 0.34%), (99.31%, 99.39%) and (99.27%, 99.32%) of accuracy, sensitivity, specificity, precision, FNR, f-measure and AUC on (collected, DDSM datasets), respectively. This research addresses the prevalent challenges in breast cancer identification and offers a robust and highly accurate solution by integrating advanced deep-learning techniques. The evaluated re
With the recent advances in the field of deep learning, an increasing number of deep neural networks have been applied to business process prediction tasks, remaining time prediction, to obtain more accurate predictiv...
详细信息
With the recent advances in the field of deep learning, an increasing number of deep neural networks have been applied to business process prediction tasks, remaining time prediction, to obtain more accurate predictive results. However, existing time prediction methods based on deep learning have poor interpretability, an explainable business process remaining time prediction method is proposed using reachability graph,which consists of prediction model construction and visualization. For prediction models, a Petri net is mined and the reachability graph is constructed to obtain the transition occurrence vector. Then, prefixes and corresponding suffixes are generated to cluster into different transition partitions according to transition occurrence vector. Next,the bidirectional recurrent neural network with attention is applied to each transition partition to encode the prefixes, and the deep transfer learning between different transition partitions is performed. For the visualization of prediction models, the evaluation values are added to the sub-processes of a Petri net to realize the visualization of the prediction models. Finally, the proposed method is validated by publicly available event logs.
Underwater target detection is an important method for detecting marine organisms. However, due to the image occlusion of underwater targets, blurred water quality, poor lighting conditions, small targets, and complex...
详细信息
Breast tumor segmentation is vital to tumor detection at the early stages. Deep learning methods are typically used in automatic tumor segmentation tasks. However, in existing methods, the difference between pixels is...
详细信息
Breast tumor segmentation is vital to tumor detection at the early stages. Deep learning methods are typically used in automatic tumor segmentation tasks. However, in existing methods, the difference between pixels is disregarded, and the union network architecture is used to segment all pixels; these methods involve a tradeoff between accuracy and efficiency. A novel, difficulty-aware, prior-guided hierarchical network for the adaptive segmentation of breast tumors is presented herein. A difficulty prior learning module is proposed to learn the pixel's difficulty prior to guild adaptive segmentation in the proposed network. To achieve a more accurate segmentation of hard pixels, a hard pixel processing unit is presented to learn more discriminative features for hard pixels. Experiments are conducted based on three datasets. The experimental results show that the proposed methods outperform traditional deep learning methods and achieve a balance between accuracy and efficiency.
Animation is a widespread artistic expression that holds a special place in people's hearts. Traditionally, animation creation has relied heavily on manual techniques, demanding skilled drawing abilities and a sig...
详细信息
Vehicular Adhoc Networks(VANETs)enable vehicles to act as mobile nodes that can fetch,share,and disseminate information about vehicle safety,emergency events,warning messages,and passenger ***,the continuous dissemina...
详细信息
Vehicular Adhoc Networks(VANETs)enable vehicles to act as mobile nodes that can fetch,share,and disseminate information about vehicle safety,emergency events,warning messages,and passenger ***,the continuous dissemination of information fromvehicles and their one-hop neighbor nodes,Road Side Units(RSUs),and VANET infrastructures can lead to performance degradation of VANETs in the existing hostcentric IP-based ***,Information Centric Networks(ICN)are being explored as an alternative architecture for vehicular communication to achieve robust content distribution in highly mobile,dynamic,and errorprone *** ICN-based Vehicular-IoT networks,consumer mobility is implicitly supported,but producer mobility may result in redundant data transmission and caching inefficiency at intermediate vehicular *** paper proposes an efficient redundant transmission control algorithm based on network coding to reduce data redundancy and accelerate the efficiency of information *** proposed protocol,called Network Cording Multiple Solutions Scheduling(NCMSS),is receiver-driven collaborative scheduling between requesters and information sources that uses a global parameter expectation deadline to effectively manage the transmission of encoded data packets and control the selection of information *** results for the proposed NCMSS protocol is demonstrated to analyze the performance of ICN-vehicular-IoT networks in terms of caching,data retrieval delay,and end-to-end application *** end-to-end throughput in proposed NCMSS is 22%higher(for 1024 byte data)than existing solutions whereas delay in NCMSS is reduced by 5%in comparison with existing solutions.
暂无评论