Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more a...
详细信息
Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more attention. Researchers have discovered various types of energy defects in Android applications, which could quickly drain the battery power of mobile devices. Such defects not only cause inconvenience to users, but also frustrate Android developers as diagnosing the energy inefficiency of a software product is a non-trivial task. In this work, we perform a literature review to understand the state of the art of energy inefficiency diagnosis for Android applications. We identified 55 research papers published in recent years and classified existing studies from four different perspectives, including power estimation method, hardware component, types of energy defects, and program analysis approach. We also did a cross-perspective analysis to summarize and compare our studied techniques. We hope that our review can help structure and unify the literature and shed light on future research, as well as drawing developers' attention to build energy-efficient Android applications.
The emergence of 5G networks has enabled the deployment of a two-tier edge and vehicular-fog network. It comprises Multi-access Edge Computing (MEC) and Vehicular-Fogs (VFs), strategically positioned closer to Interne...
详细信息
The recent advancements in deep convolutional neural networks have shown significant promise in the domain of road scene parsing. Nevertheless, the existing works focus primarily on freespace detection, with little at...
详细信息
The recent advancements in deep convolutional neural networks have shown significant promise in the domain of road scene parsing. Nevertheless, the existing works focus primarily on freespace detection, with little attention given to hazardous road defects that could compromise both driving safety and comfort. In this article, we introduce RoadFormer, a novel Transformer-based data-fusion network developed for road scene parsing. RoadFormer utilizes a duplex encoder architecture to extract heterogeneous features from both RGB images and surface normal information. The encoded features are subsequently fed into a novel heterogeneous feature synergy block for effective feature fusion and recalibration. The pixel decoder then learns multi-scale long-range dependencies from the fused and recalibrated heterogeneous features, which are subsequently processed by a Transformer decoder to produce the final semantic prediction. Additionally, we release SYN-UDTIRI, the first large-scale road scene parsing dataset that contains over 10,407 RGB images, dense depth images, and the corresponding pixel-level annotations for both freespace and road defects of different shapes and sizes. Extensive experimental evaluations conducted on our SYN-UDTIRI dataset, as well as on three public datasets, including KITTI road, CityScapes, and ORFD, demonstrate that RoadFormer outperforms all other state-of-the-art networks for road scene parsing. Specifically, RoadFormer ranks first on the KITTI road benchmark. Our source code, created dataset, and demo video are publicly available at ***/RoadFormer. IEEE
The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Rec...
详细信息
The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Recognition(HAR)***,the significant computational demands and memory requirements hinder the practical deployment of deep networks in resource-constrained *** paper introduces a novel network pruning method based on the energy spectral density of data in the frequency domain,which reduces the model’s depth and accelerates activity *** traditional pruning methods that focus on the spatial domain and the importance of filters,this method converts sensor data,such as HAR data,to the frequency domain for *** emphasizes the low-frequency components by calculating their energy spectral density ***,filters that meet the predefined thresholds are retained,and redundant filters are removed,leading to a significant reduction in model size without compromising performance or incurring additional computational ***,the proposed algorithm’s effectiveness is empirically validated on a standard five-layer CNNs backbone *** computational feasibility and data sensitivity of the proposed scheme are thoroughly ***,the classification accuracy on three benchmark HAR datasets UCI-HAR,WISDM,and PAMAP2 reaches 96.20%,98.40%,and 92.38%,***,our strategy achieves a reduction in Floating Point Operations(FLOPs)by 90.73%,93.70%,and 90.74%,respectively,along with a corresponding decrease in memory consumption by 90.53%,93.43%,and 90.05%.
In today’s fast-paced world,many elderly individuals struggle to adhere to their medication schedules,especially those with memory-related conditions like Alzheimer’s disease,leading to serious health risks,hospital...
详细信息
In today’s fast-paced world,many elderly individuals struggle to adhere to their medication schedules,especially those with memory-related conditions like Alzheimer’s disease,leading to serious health risks,hospital-izations,and increased healthcare *** reminder systems often fail due to a lack of personalization and real-time *** address this critical challenge,we introduce MediServe,an advanced IoT-enabled medication management system that seamlessly integrates deep learning techniques to provide a personalized,secure,and adaptive *** features a smart medication box equipped with biometric authentication,such as fingerprint recognition,ensuring authorized access to prescribed medication while preventing misuse.A user-friendly mobile application complements the system,offering real-time notifications,adherence tracking,and emergency alerts for caregivers and healthcare *** system employs predictive deep learning models,achieving an impressive classification accuracy of 98%,to analyze user behavior,detect anomalies in medication adherence,and optimize scheduling based on an individual’s habits and health ***,MediServe enhances accessibility by employing natural language processing(NLP)models for voice-activated interactions and text-to-speech capabilities,making it especially beneficial for visually impaired users and those with cognitive ***-based data analytics and wireless connectivity facilitate remote monitoring,ensuring that caregivers receive instant alerts in case of missed doses or medication ***,machine learning-based clustering and anomaly detection refine medication reminders by adapting to users’changing health *** combining IoT,deep learning,and advanced security protocols,MediServe delivers a comprehensive,intelligent,and inclusive solution for medication *** innovative approach not only improves the quality of life for elderly
Clinical auxiliary decision-making is related to life and health of patients, so the deep model needs to extract the personalised representation of patients to ensure high analysis and prediction accuracy;and provide ...
详细信息
Agriculture plays a vital role in providing food to a growing world population. However, plant diseases and pests result in 50% reductions in crop yields, which exacerbates poverty and threatens a sustainable food sys...
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces....
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces. Large-scale data collection and annotation make the application of machine learning algorithms prohibitively expensive when adapting to new tasks. One way of circumventing this limitation is to train the model in a semi-supervised learning manner that utilizes a percentage of unlabeled data to reduce the labeling burden in prediction tasks. Despite their appeal, these models often assume that labeled and unlabeled data come from similar distributions, which leads to the domain shift problem caused by the presence of distribution gaps. To address these limitations, we propose herein a novel method for people-centric activity recognition,called domain generalization with semi-supervised learning(DGSSL), that effectively enhances the representation learning and domain alignment capabilities of a model. We first design a new autoregressive discriminator for adversarial training between unlabeled and labeled source domains, extracting domain-specific features to reduce the distribution gaps. Second, we introduce two reconstruction tasks to capture the task-specific features to avoid losing information related to representation learning while maintaining task-specific consistency. Finally, benefiting from the collaborative optimization of these two tasks, the model can accurately predict both the domain and category labels of the source domains for the classification task. We conduct extensive experiments on three real-world sensing datasets. The experimental results show that DGSSL surpasses the three state-of-the-art methods with better performance and generalization.
In the optimization of intelligent network architecture, limited resources at each node, including edge computing devices, have posed challenges for deploying large models in performance-demanding scenarios. Knowledge...
详细信息
The rapid development of the Internet has led to the widespread dissemination of manipulated facial images, significantly impacting people's daily lives. With the continuous advancement of Deepfake technology, the...
详细信息
The rapid development of the Internet has led to the widespread dissemination of manipulated facial images, significantly impacting people's daily lives. With the continuous advancement of Deepfake technology, the generated counterfeit facial images have become increasingly challenging to distinguish. There is an urgent need for a more robust and convincing detection method. Current detection methods mainly operate in the spatial domain and transform the spatial domain into other domains for analysis. With the emergence of transformers, some researchers have also combined traditional convolutional networks with transformers for detection. This paper explores the artifacts left by Deepfakes in various domains and, based on this exploration, proposes a detection method that utilizes the steganalysis rich model to extract high-frequency noise to complement spatial features. We have designed two main modules to fully leverage the interaction between these two aspects based on traditional convolutional neural networks. The first is the multi-scale mixed feature attention module, which introduces artifacts from high-frequency noise into spatial textures, thereby enhancing the model's learning of spatial texture features. The second is the multi-scale channel attention module, which reduces the impact of background noise by weighting the features. Our proposed method was experimentally evaluated on mainstream datasets, and a significant amount of experimental results demonstrate the effectiveness of our approach in detecting Deepfake forged faces, outperforming the majority of existing methods.
暂无评论