The rapid advancement and proliferation of Cyber-Physical Systems (CPS) have led to an exponential increase in the volume of data generated continuously. Efficient classification of this streaming data is crucial for ...
详细信息
The effectiveness of modeling contextual information has been empirically shown in numerous computer vision tasks. In this paper, we propose a simple yet efficient augmented fully convolutional network(AugFCN) by aggr...
详细信息
The effectiveness of modeling contextual information has been empirically shown in numerous computer vision tasks. In this paper, we propose a simple yet efficient augmented fully convolutional network(AugFCN) by aggregating content-and position-based object contexts for semantic ***, motivated because each deep feature map is a global, class-wise representation of the input,we first propose an augmented nonlocal interaction(AugNI) to aggregate the global content-based contexts through all feature map interactions. Compared to classical position-wise approaches, AugNI is more efficient. Moreover, to eliminate permutation equivariance and maintain translation equivariance, a learnable,relative position embedding branch is then supportably installed in AugNI to capture the global positionbased contexts. AugFCN is built on a fully convolutional network as the backbone by deploying AugNI before the segmentation head network. Experimental results on two challenging benchmarks verify that AugFCN can achieve a competitive 45.38% mIoU(standard mean intersection over union) and 81.9% mIoU on the ADE20K val set and Cityscapes test set, respectively, with little computational overhead. Additionally, the results of the joint implementation of AugNI and existing context modeling schemes show that AugFCN leads to continuous segmentation improvements in state-of-the-art context modeling. We finally achieve a top performance of 45.43% mIoU on the ADE20K val set and 83.0% mIoU on the Cityscapes test set.
Serverless computing has shifted cloud server management responsibilities away from end users and towards service providers. Serverless computing offers greater scalability, flexibility, ease of deployment, and cost-e...
详细信息
The multi-modal object detection technology based on visible-thermal vision sensors has drawn significant attention as it is capable of achieving reliable object detection in complex scenes with challenging lighting c...
详细信息
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical *** main objective of nonlinear filtering is to i...
详细信息
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical *** main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber ***, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.
Rank aggregation is the combination of several ranked lists from a set of candidates to achieve a better ranking by combining information from different sources. In feature selection problem, due to the heterogeneity ...
详细信息
Human activity recognition (HAR) techniques pick out and interpret human behaviors and actions by analyzing data gathered from various sensor devices. HAR aims to recognize and automatically categorize human activitie...
详细信息
With advancements in technology, the study of data hiding (DH) in images has become more and more important. In this paper, we introduce a novel data hiding scheme that employs a voting strategy to predict pixels base...
详细信息
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in convention...
详细信息
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in conventional and software-defined networking(SDN)*** Machine Learning(ML)models can distinguish between benign and malicious traffic,their limited feature scope hinders the detection of new zero-day or low-rate DDoS attacks requiring frequent *** this paper,we propose a novel DDoS detection framework that combines Machine Learning(ML)and Ensemble Learning(EL)techniques to improve DDoS attack detection and mitigation in SDN *** model leverages the“DDoS SDN”dataset for training and evaluation and employs a dynamic feature selection mechanism that enhances detection accuracy by focusing on the most relevant *** adaptive approach addresses the limitations of conventional ML models and provides more accurate detection of various DDoS attack *** proposed ensemble model introduces an additional layer of detection,increasing reliability through the innovative application of ensemble *** proposed solution significantly enhances the model’s ability to identify and respond to dynamic threats in *** provides a strong foundation for proactive DDoS detection and mitigation,enhancing network defenses against evolving *** comprehensive runtime analysis of Simultaneous Multi-Threading(SMT)on identical configurations shows superior accuracy and efficiency,with significantly reduced computational time,making it ideal for real-time DDoS detection in dynamic,rapidly changing *** results demonstrate that our model achieves outstanding performance,outperforming traditional algorithms with 99%accuracy using Random Forest(RF)and K-Nearest Neighbors(KNN)and 98%accuracy using XGBoost.
Diabetes has become one of the significant reasons for public sickness and death in worldwide. By 2019, diabetes had affected more than 463 million people worldwide. According to the International Diabetes Federation ...
详细信息
暂无评论