The Internet of Things(IoT)is emerging as an innovative phenomenon concerned with the development of numerous vital *** the development of IoT devices,huge amounts of information,including users’private data,are *** ...
详细信息
The Internet of Things(IoT)is emerging as an innovative phenomenon concerned with the development of numerous vital *** the development of IoT devices,huge amounts of information,including users’private data,are *** systems face major security and data privacy challenges owing to their integral features such as scalability,resource constraints,and *** challenges are intensified by the fact that IoT technology frequently gathers and conveys complex data,creating an attractive opportunity for *** address these challenges,artificial intelligence(AI)techniques,such as machine learning(ML)and deep learning(DL),are utilized to build an intrusion detection system(IDS)that helps to secure IoT *** learning(FL)is a decentralized technique that can help to improve information privacy and performance by training the IDS on discrete linked *** delivers an effectual tool to defend user confidentiality,mainly in the field of IoT,where IoT devices often obtain privacy-sensitive personal *** study develops a Privacy-Enhanced Federated Learning for Intrusion Detection using the Chameleon Swarm Algorithm and Artificial Intelligence(PEFLID-CSAAI)*** main aim of the PEFLID-CSAAI method is to recognize the existence of attack behavior in IoT ***,the PEFLIDCSAAI technique involves data preprocessing using Z-score normalization to transformthe input data into a beneficial ***,the PEFLID-CSAAI method uses the Osprey Optimization Algorithm(OOA)for the feature selection(FS)*** the classification of intrusion detection attacks,the Self-Attentive Variational Autoencoder(SA-VAE)technique can be ***,the Chameleon Swarm Algorithm(CSA)is applied for the hyperparameter finetuning process that is involved in the SA-VAE model.A wide range of experiments were conducted to validate the execution of the PEFLID-CSAAI *** simulated outcomes demonstrated that the PEFLID-CSAAI
The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic *** this article,a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored d...
详细信息
The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic *** this article,a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored dataset obtained from a private hospital for detecting COVID-19,pneumonia,and normal conditions in chest X-ray images(CXIs)is proposed coupled with Explainable Artificial Intelligence(XAI).Our study leverages less preprocessing with pre-trained cutting-edge models like InceptionV3,VGG16,and VGG19 that excel in the task of feature *** methodology is further enhanced by the inclusion of the t-SNE(t-Distributed Stochastic Neighbor Embedding)technique for visualizing the extracted image features and Contrast Limited Adaptive Histogram Equalization(CLAHE)to improve images before extraction of ***,an AttentionMechanism is utilized,which helps clarify how the modelmakes decisions,which builds trust in artificial intelligence(AI)*** evaluate the effectiveness of the proposed approach,both benchmark datasets and a private dataset obtained with permissions from Jinnah PostgraduateMedical Center(JPMC)in Karachi,Pakistan,are *** 12 experiments,VGG19 showcased remarkable performance in the hybrid dataset approach,achieving 100%accuracy in COVID-19 *** classification and 97%in distinguishing normal ***,across all classes,the approach achieved 98%accuracy,demonstrating its efficiency in detecting COVID-19 and differentiating it fromother chest disorders(Pneumonia and healthy)while also providing insights into the decision-making process of the models.
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Techniqu...
详细信息
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique (SMOTE) was developed to address the problem of imbalanced data. Over time, several weaknesses of the SMOTE method have been identified in generating synthetic minority class data, such as overlapping, noise, and small disjuncts. However, these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping. Therefore, this study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated data. This study proposes a combined approach of filtering, clustering, and distance modification to reduce noise and overlapping produced by SMOTE. Filtering removes minority class data (noise) located in majority class regions, with the k-nn method applied for filtering. The use of Noise Reduction (NR), which removes data that is considered noise before applying SMOTE, has a positive impact in overcoming data imbalance. Clustering establishes decision boundaries by partitioning data into clusters, allowing SMOTE with modified distance metrics to generate minority class data within each cluster. This SMOTE clustering and distance modification approach aims to minimize overlap in synthetic minority data that could introduce noise. The proposed method is called “NR-Clustering SMOTE,” which has several stages in balancing data: (1) filtering by removing minority classes close to majority classes (data noise) using the k-nn method;(2) clustering data using K-means aims to establish decision boundaries by partitioning data into several clusters;(3) applying SMOTE oversampling with Manhattan distance within each cluster. Test results indicate that the proposed NR-Clustering SMOTE method achieves the best performance across all evaluation metrics for classification methods such as Random Forest, SVM, and Naїve Bayes, compared t
Cancer is one of the most devastating health conditions in the world. In the diagnosis and treatment of the various forms of cancer illness, studies have shown that early detection of the cancer by clinical methods us...
详细信息
Feature selection helps eradicate redundant features which is essential to mitigate the curse of dimensionality when a machine-learning model deals with high-dimensional datasets. Grey Wolf Optimizer (GWO) is a swarm-...
详细信息
Monkeypox is an infectious illness caused by the DNA-based monkeypox virus, which has raised public health concerns due to its rapid transmission to over 50 countries. Direct physical interaction with infected humans ...
详细信息
Around the world, vehicle accidents claim many priceless lives. To tackle this problem, the Vehicular ad hoc networks (VANETs) are the most effective solution. Effective communication between vehicular nodes in VANETs...
详细信息
In the increasingly digitized world, the privacy and security of sensitive data shared via IoT devices are paramount. Traditional privacy-preserving methods like k-anonymity and ldiversity are becoming outdated due to...
详细信息
In the increasingly digitized world, the privacy and security of sensitive data shared via IoT devices are paramount. Traditional privacy-preserving methods like k-anonymity and ldiversity are becoming outdated due to technological advancements. In addition, data owners often worry about misuse and unauthorized access to their personal information. To address this, we propose a secure data-sharing framework that uses local differential privacy (LDP) within a permissioned blockchain, enhanced by federated learning (FL) in a zero-trust environment. To further protect sensitive data shared by IoT devices, we use the Interplanetary File System (IPFS) and cryptographic hash functions to create unique digital fingerprints for files. We mainly evaluate our system based on latency, throughput, privacy accuracy, and transaction efficiency, comparing the performance to a benchmark model. The experimental results show that the proposed system outperforms its counterpart in terms of latency, throughput, and transaction efficiency. The proposed model achieved a lower average latency of 4.0 seconds compared to the benchmark model’s 5.3 seconds. In terms of throughput, the proposed model achieved a higher throughput of 10.53 TPS (transactions per second) compared to the benchmark model’s 8 TPS. Furthermore, the proposed system achieves 85% accuracy, whereas the counterpart achieves only 49%. IEEE
In routing protocols for low-power and lossy (RPL)-based Internet of Things (IoT) networks, congestion control is essential for ensuring efficient and dependable communications with energy awareness. As the number of ...
详细信息
In order to meet the pressing demand for early diagnosis in healthcare, we proposed a unique hybrid architecture in this study that is intended for the categorization of gastrointestinal (GI) illnesses. With fewer tra...
详细信息
暂无评论