咨询与建议

限定检索结果

文献类型

  • 292 篇 会议
  • 144 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 439 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 295 篇 工学
    • 218 篇 计算机科学与技术...
    • 188 篇 软件工程
    • 81 篇 信息与通信工程
    • 32 篇 生物工程
    • 21 篇 控制科学与工程
    • 17 篇 仪器科学与技术
    • 16 篇 生物医学工程(可授...
    • 15 篇 化学工程与技术
    • 14 篇 电子科学与技术(可...
    • 9 篇 机械工程
    • 8 篇 电气工程
    • 6 篇 光学工程
    • 5 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
  • 170 篇 理学
    • 95 篇 物理学
    • 69 篇 数学
    • 38 篇 统计学(可授理学、...
    • 37 篇 生物学
    • 15 篇 化学
    • 13 篇 系统科学
  • 72 篇 管理学
    • 51 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 12 篇 医学
    • 11 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 10 篇 文学
    • 8 篇 外国语言文学
    • 7 篇 中国语言文学
  • 9 篇 法学
    • 8 篇 社会学
  • 7 篇 农学
    • 5 篇 作物学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 49 篇 speech recogniti...
  • 24 篇 speech
  • 21 篇 hidden markov mo...
  • 21 篇 training
  • 19 篇 speech processin...
  • 14 篇 acoustics
  • 13 篇 decoding
  • 13 篇 natural language...
  • 12 篇 computational mo...
  • 11 篇 signal processin...
  • 9 篇 computational li...
  • 9 篇 databases
  • 9 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 syntactics
  • 8 篇 automatic speech...
  • 7 篇 training data
  • 7 篇 testing
  • 7 篇 speaker recognit...
  • 6 篇 machine translat...

机构

  • 27 篇 department of co...
  • 24 篇 center for langu...
  • 21 篇 department of co...
  • 18 篇 department of co...
  • 16 篇 mainlp center fo...
  • 12 篇 munich
  • 11 篇 department of co...
  • 9 篇 center for infor...
  • 9 篇 department of co...
  • 9 篇 center for speec...
  • 7 篇 department of co...
  • 7 篇 human language t...
  • 7 篇 department of el...
  • 7 篇 center for langu...
  • 7 篇 center for langu...
  • 6 篇 center for speec...
  • 6 篇 center for infor...
  • 6 篇 speechlab depart...
  • 6 篇 center for langu...
  • 6 篇 national enginee...

作者

  • 21 篇 plank barbara
  • 18 篇 zheng thomas fan...
  • 18 篇 yarowsky david
  • 17 篇 thomas fang zhen...
  • 15 篇 van der goot rob
  • 14 篇 khudanpur sanjee...
  • 12 篇 wang dong
  • 12 篇 sanjeev khudanpu...
  • 11 篇 callison-burch c...
  • 11 篇 eisner jason
  • 9 篇 schütze hinrich
  • 9 篇 lei xie
  • 9 篇 koehn philipp
  • 9 篇 cotterell ryan
  • 8 篇 du xiaojiang
  • 8 篇 smith noah a.
  • 8 篇 zhu liehuang
  • 8 篇 watanabe shinji
  • 7 篇 li zhifei
  • 7 篇 dredze mark

语言

  • 416 篇 英文
  • 20 篇 其他
  • 5 篇 中文
检索条件"机构=Department of Computer Science and Center for Language and Speech Processing"
439 条 记 录,以下是211-220 订阅
排序:
A novel unsupervised method for new word extraction
收藏 引用
science China(Information sciences) 2016年 第9期59卷 11-21页
作者: Lili MEI Heyan HUANG Xiaochi WEI Xianling MAO Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications Department of Computer Science and TechnologyBeijing Institute of Technology
New words could benefit many NLP tasks such as sentence chunking and sentiment analysis. However, automatic new word extraction is a challenging task because new words usually have no fixed language pattern, and even ... 详细信息
来源: 评论
Deep speaker verification: Do we need end to end?
arXiv
收藏 引用
arXiv 2017年
作者: Wang, Dong Li, Lantian Tang, Zhiyuan Zheng, Thomas Fang Center for Speech and Language Technologies Research Institute of Information Technology Department of Computer Science and Technology Tsinghua University China
End-to-end learning treats the entire system as a whole adaptable black box, which, if sufficient data are available, may learn a system that works very well for the target task. This principle has recently been appli... 详细信息
来源: 评论
The JHU Machine Translation Systems for WMT 2016  1
The JHU Machine Translation Systems for WMT 2016
收藏 引用
1st Conference on Machine Translation, WMT 2016, held at the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016
作者: Ding, Shuoyang Duh, Kevin Khayrallah, Huda Koehn, Philipp Post, Matt Center for Language and Speech Processing Human Language Technology Center of Excellence Department of Computer Science Johns Hopkins University BaltimoreMD United States
This paper describes the submission of Johns Hopkins University for the shared translation task of ACL 2016 First Conference on Machine Translation (WMT 2016). We set up phrase-based, hierarchical phrase-based and syn... 详细信息
来源: 评论
Translation of Unknown Words in Low Resource languages  12
Translation of Unknown Words in Low Resource Languages
收藏 引用
12th Conference of the Association for Machine Translation in the Americas, AMTA 2016
作者: Gujral, Biman Khayrallah, Huda Koehn, Philipp Department of Computer Science Center for Language and Speech Processing Johns Hopkins University BaltimoreMD21218 United States
We address the problem of unknown words, also known as out of vocabulary (OOV) words, in machine translation of low resource languages. Our technique comprises a combination of methods, inspired by the common OOV type... 详细信息
来源: 评论
Neural Interactive Translation Prediction  12
Neural Interactive Translation Prediction
收藏 引用
12th Conference of the Association for Machine Translation in the Americas, AMTA 2016
作者: Knowles, Rebecca Koehn, Philipp Department of Computer Science Center for Language and Speech Processing Johns Hopkins University BaltimoreMD21218 United States
We present an interactive translation prediction method based on neural machine translation. Even with the same translation quality of the underlying machine translation systems, the neural prediction method yields mu... 详细信息
来源: 评论
A study on replay attack and anti-spoofing for automatic speaker verification
arXiv
收藏 引用
arXiv 2017年
作者: Li, Lantian Chen, Yixiang Wang, Dong Zheng, Thomas Fang Center for Speech and Language Technologies Research Institute of Information Technology Department of Computer Science and Technology Tsinghua University Beijing100084 China
For practical automatic speaker verification (ASV) systems, replay attack poses a true risk. By replaying a pre-recorded speech signal of the genuine speaker, ASV systems tend to be easily fooled. An effective replay ... 详细信息
来源: 评论
Full-info training for deep speaker feature learning
arXiv
收藏 引用
arXiv 2017年
作者: Li, Lantian Tang, Zhiyuan Wang, Dong Zheng, Thomas Fang Center for Speech and Language Technologies Research Institute of Information Technology Department of Computer Science and Technology Tsinghua University Beijing100084 China
In recent studies, it has shown that speaker patterns can be learned from very short speech segments (e.g., 0.3 seconds) by a carefully designed convolutional & time-delay deep neural network (CT-DNN) model. By en... 详细信息
来源: 评论
Cross-sentence N-ary relation extraction with graph LSTMs
arXiv
收藏 引用
arXiv 2017年
作者: Peng, Nanyun Poon, Hoifung Quirk, Chris Toutanova, Kristina Yih, Wen-Tau Center for Language and Speech Processing Computer Science Department Johns Hopkins University BaltimoreMD United States Microsoft Research RedmondWA United States Google Research SeattleWA United States
Past work in relation extraction has focused on binary relations in single sentences. Recent NLP inroads in high-value domains have sparked interest in the more general setting of extracting n-ary relations that span ... 详细信息
来源: 评论
Enhancement and Analysis of Conversational speech: JSALT 2017
Enhancement and Analysis of Conversational Speech: JSALT 201...
收藏 引用
IEEE International Conference on Acoustics, speech and Signal processing
作者: Neville Ryanta Elika Bergelson Kenneth Church Alejandrina Cristia Jun Du Sriram Ganapathy Sanjeev Khudanpur Diana Kowalski Mahesh Krishnamoorthy Rajat Kulshreshta Mark Liberman Yu-Ding Lu Matthew Maciejewski Florian Metze Jan Profant Lei Sun Yu Tsao Zhou Yu Linguistic Data Consortium University of Pennsylvania Philadelphia PA USA Department of Psychology and Neuroscience Duke University Durham NC USA IBM Yorktown Heights NY USA Laboratoire de Sciences Cognitives et Psycholinguistique ENS Paris France University of Science and Technology of China Hefei China Electrical Engineering Department Indian Institute of Science Bangalore India Center for Language and Speech Processing Johns Hopkins University Baltimore MD USA University of Illinois at Urbana-Champaign Champaign IL USA Apple Cupertino CA USA Language Technologies Institute Carnegie Mellon University Pittsburgh PA USA Research Center for Information Technology Innovation Academia Sinica Taipei Taiwan Brno University of Technology Brno Czech Republic Department of Computer Science University of California Davis Davis CA USA
Automatic speech recognition is more and more widely and effectively used. Nevertheless, in some automatic speech analysis tasks the state of the art is surprisingly poor. One of these is "diarization", the ... 详细信息
来源: 评论
Phone-aware neural language identification
Phone-aware neural language identification
收藏 引用
Oriental COCOSDA International Conference on speech Database and Assessments
作者: Zhiyuan Tang Dong Wang Yixiang Chen Ying Shi Lantian Li Center for Speech and Language Technologies RIIT Tsinghua University Tsinghua National Laboratory for Information Science and Technology Tsinghua University Department of Computer Science Tsinghua University
Pure acoustic neural models, particularly the LSTM-RNN model, have shown great potential in language identification (LID). However, the phonetic information has been largely overlooked by most of existing neural LID m... 详细信息
来源: 评论