咨询与建议

限定检索结果

文献类型

  • 292 篇 会议
  • 143 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 438 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 294 篇 工学
    • 218 篇 计算机科学与技术...
    • 188 篇 软件工程
    • 80 篇 信息与通信工程
    • 32 篇 生物工程
    • 21 篇 控制科学与工程
    • 17 篇 仪器科学与技术
    • 16 篇 生物医学工程(可授...
    • 15 篇 化学工程与技术
    • 13 篇 电子科学与技术(可...
    • 9 篇 机械工程
    • 8 篇 电气工程
    • 6 篇 光学工程
    • 5 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
  • 169 篇 理学
    • 95 篇 物理学
    • 68 篇 数学
    • 38 篇 统计学(可授理学、...
    • 37 篇 生物学
    • 15 篇 化学
    • 13 篇 系统科学
  • 72 篇 管理学
    • 51 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 12 篇 医学
    • 11 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 10 篇 文学
    • 8 篇 外国语言文学
    • 7 篇 中国语言文学
  • 9 篇 法学
    • 8 篇 社会学
  • 7 篇 农学
    • 5 篇 作物学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 49 篇 speech recogniti...
  • 24 篇 speech
  • 21 篇 hidden markov mo...
  • 21 篇 training
  • 19 篇 speech processin...
  • 14 篇 acoustics
  • 13 篇 decoding
  • 13 篇 natural language...
  • 12 篇 computational mo...
  • 11 篇 signal processin...
  • 9 篇 computational li...
  • 9 篇 databases
  • 9 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 syntactics
  • 8 篇 automatic speech...
  • 7 篇 training data
  • 7 篇 testing
  • 7 篇 speaker recognit...
  • 6 篇 machine translat...

机构

  • 27 篇 department of co...
  • 24 篇 center for langu...
  • 21 篇 department of co...
  • 18 篇 department of co...
  • 16 篇 mainlp center fo...
  • 12 篇 munich
  • 11 篇 department of co...
  • 9 篇 center for infor...
  • 9 篇 department of co...
  • 9 篇 center for speec...
  • 7 篇 department of co...
  • 7 篇 human language t...
  • 7 篇 department of el...
  • 7 篇 center for langu...
  • 7 篇 center for langu...
  • 6 篇 center for speec...
  • 6 篇 center for infor...
  • 6 篇 speechlab depart...
  • 6 篇 center for langu...
  • 6 篇 national enginee...

作者

  • 21 篇 plank barbara
  • 18 篇 zheng thomas fan...
  • 18 篇 yarowsky david
  • 17 篇 thomas fang zhen...
  • 15 篇 van der goot rob
  • 14 篇 khudanpur sanjee...
  • 12 篇 wang dong
  • 12 篇 sanjeev khudanpu...
  • 11 篇 callison-burch c...
  • 11 篇 eisner jason
  • 9 篇 schütze hinrich
  • 9 篇 lei xie
  • 9 篇 koehn philipp
  • 9 篇 cotterell ryan
  • 8 篇 du xiaojiang
  • 8 篇 smith noah a.
  • 8 篇 zhu liehuang
  • 8 篇 watanabe shinji
  • 7 篇 li zhifei
  • 7 篇 dredze mark

语言

  • 424 篇 英文
  • 11 篇 其他
  • 5 篇 中文
检索条件"机构=Department of Computer Science and Center for Language and Speech Processing"
438 条 记 录,以下是241-250 订阅
排序:
FrameNet+: Fast paraphrastic tripling of FrameNet  53
FrameNet+: Fast paraphrastic tripling of FrameNet
收藏 引用
53rd Annual Meeting of the Association for Computational Linguistics and 7th International Joint Conference on Natural language processing of the Asian Federation of Natural language processing, ACL-IJCNLP 2015
作者: Pavlick, Ellie Wolfe, Travis Rastogi, Pushpendre Callison-Burch, Chris Dredze, Mark Van Durme, Benjamin Computer and Information Science Department University of Pennsylvania United States Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
We increase the lexical coverage of FrameNet through automatic paraphrasing. We use crowdsourcing to manually filter out bad paraphrases in order to ensure a high-precision resource. Our expanded FrameNet contains an ...
来源: 评论
Uncertainty estimation of DNN classifiers
Uncertainty estimation of DNN classifiers
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding, ASRU 2015
作者: Mallidi, Sri Harish Ogawa, Tetsuji Hermansky, Hynek Center for Language and Speech Processing Johns Hopkins University Baltimore United States Human Language Technology Center of Excellence Johns Hopkins University Baltimore United States Department of Computer Science Waseda University Tokyo Japan
New efficient measures for estimating uncertainty of deep neural network (DNN) classifiers are proposed and successfully applied to multistream-based unsupervised adaptation of ASR systems to address uncertainty deriv... 详细信息
来源: 评论
Enhancing participant selection through caching in mobile crowd sensing
Enhancing participant selection through caching in mobile cr...
收藏 引用
International Workshop on Quality of Service
作者: Hanshang Li Ting Li Fan Li Weichao Wang Yu Wang Department of Computer Science University of North Carolina at Charlotte Charlotte NC USA Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications Beijing China School of Computer Science Beijing Institute of Technology Beijing China
With the rapid increasing of smart phones and their embedded sensing technologies, mobile crowd sensing (MCS) becomes an emerging sensing paradigm for performing large-scale sensing tasks. One of the key challenges of... 详细信息
来源: 评论
EchoLoc: Accurate Device-Free Hand Localization Using COTS Devices
EchoLoc: Accurate Device-Free Hand Localization Using COTS D...
收藏 引用
International Conference on Parallel processing (ICPP)
作者: Huijie Chen Fan Li Yu Wang School of Computer Science Beijing Institute of Technology Beijing Engineering Research Center for High Volume Language Information Processing and Cloud Computing Applications Beijing China Department of Computer Science College of Computing and Informatics University of North Carolina at Charlotte Charlotte NC USA
Hand tracking systems are becoming increasingly popular as a fundamental HCI approach. The trajectory of moving hand can be estimated through smoothing the position coordinates collected from continuous localization. ... 详细信息
来源: 评论
Labeled morphological segmentation with semi-markov models  19
Labeled morphological segmentation with semi-markov models
收藏 引用
19th Conference on Computational Natural language Learning, CoNLL 2015
作者: Cotterell, Ryan Müller, Thomas Fraser, Alexander Schütze, Hinrich Department of Computer Science Johns Hopkins University United States Center for Information and Language Processing University of Munich Germany
We present labeled morphological segmentation—an alternative view of morphological processing that unifies several tasks. We introduce a new hierarchy of morphotactic tagsets and CHIPMUNK, a discriminative morphologi... 详细信息
来源: 评论
Morphological word-embeddings
Morphological word-embeddings
收藏 引用
Conference of the North American Chapter of the Association for Computational Linguistics: Human language Technologies, NAACL HLT 2015
作者: Cotterell, Ryan Schütze, Hinrich Department of Computer Science Johns Hopkins University United States Center for Information and Language Processing University of Munich Germany
Linguistic similarity is multi-faceted. For instance, two words may be similar with respect to semantics, syntax, or morphology inter alia. Continuous word-embeddings have been shown to capture most of these shades of... 详细信息
来源: 评论
Joint lemmatization and morphological tagging with LEMMING
Joint lemmatization and morphological tagging with LEMMING
收藏 引用
Conference on Empirical Methods in Natural language processing, EMNLP 2015
作者: Müller, Thomas Cotterell, Ryan Fraser, Alexander Schütze, Hinrich Center for Information and Language Processing University of Munich Germany Department of Computer Science Johns Hopkins University United States
We present Lemming, a modular loglinear model that jointly models lemmatization and tagging and supports the integration of arbitrary global features. It is trainable on corpora annotated with gold standard tags and l... 详细信息
来源: 评论
Unsupervised speaker adaptation of deep neural network based on the combination of speaker codes and singular value decomposition for speech recognition  40
Unsupervised speaker adaptation of deep neural network based...
收藏 引用
40th IEEE International Conference on Acoustics, speech, and Signal processing, ICASSP 2015
作者: Xue, Shaofei Jiang, Hui Dai, Lirong Liu, Qingfeng National Engineering Laboratory of Speech and Language Information Processing University of Science and Technology of China Hefei China Department of Electrical Engineering and Computer Science York University Toronto Canada
Recently, we have proposed a general adaptation scheme for deep neural network based on discriminant condition codes and applied it to supervised speaker adaptation in speech recognition based on either frame-level cr... 详细信息
来源: 评论
LCCT: A semi-supervised model for sentiment classification
LCCT: A semi-supervised model for sentiment classification
收藏 引用
Conference of the North American Chapter of the Association for Computational Linguistics: Human language Technologies, NAACL HLT 2015
作者: Yang, Min Tu, Wenting Lu, Ziyu Yin, Wenpeng Chow, Kam-Pui Department of Computer Science University of Hong Kong Hong Kong Hong Kong Center for Information and Language Processing University of Munich Germany
Analyzing public opinions towards products, services and social events is an important but challenging task. An accurate sentiment analyzer should take both lexicon-level information and corpus-level information into ... 详细信息
来源: 评论
Uncertainty estimation of DNN classifiers
Uncertainty estimation of DNN classifiers
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding
作者: Sri Harish Mallidi Tetsuji Ogawa Hynek Hermansky Center for Language and Speech Processing The Johns Hopkins University Baltimore U.S.A Department of Computer Science Waseda University Tokyo Japan Human Language Technology Center of Excellence The Johns Hopkins University Baltimore U.S.A
New efficient measures for estimating uncertainty of deep neural network (DNN) classifiers are proposed and successfully applied to multistream-based unsupervised adaptation of ASR systems to address uncertainty deriv... 详细信息
来源: 评论