咨询与建议

限定检索结果

文献类型

  • 292 篇 会议
  • 143 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 438 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 294 篇 工学
    • 218 篇 计算机科学与技术...
    • 188 篇 软件工程
    • 80 篇 信息与通信工程
    • 32 篇 生物工程
    • 21 篇 控制科学与工程
    • 17 篇 仪器科学与技术
    • 16 篇 生物医学工程(可授...
    • 15 篇 化学工程与技术
    • 13 篇 电子科学与技术(可...
    • 9 篇 机械工程
    • 8 篇 电气工程
    • 6 篇 光学工程
    • 5 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
  • 169 篇 理学
    • 95 篇 物理学
    • 68 篇 数学
    • 38 篇 统计学(可授理学、...
    • 37 篇 生物学
    • 15 篇 化学
    • 13 篇 系统科学
  • 72 篇 管理学
    • 51 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 12 篇 医学
    • 11 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 10 篇 文学
    • 8 篇 外国语言文学
    • 7 篇 中国语言文学
  • 9 篇 法学
    • 8 篇 社会学
  • 7 篇 农学
    • 5 篇 作物学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 49 篇 speech recogniti...
  • 24 篇 speech
  • 21 篇 hidden markov mo...
  • 21 篇 training
  • 19 篇 speech processin...
  • 14 篇 acoustics
  • 13 篇 decoding
  • 13 篇 natural language...
  • 12 篇 computational mo...
  • 11 篇 signal processin...
  • 9 篇 computational li...
  • 9 篇 databases
  • 9 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 syntactics
  • 8 篇 automatic speech...
  • 7 篇 training data
  • 7 篇 testing
  • 7 篇 speaker recognit...
  • 6 篇 machine translat...

机构

  • 27 篇 department of co...
  • 24 篇 center for langu...
  • 21 篇 department of co...
  • 18 篇 department of co...
  • 16 篇 mainlp center fo...
  • 12 篇 munich
  • 11 篇 department of co...
  • 9 篇 center for infor...
  • 9 篇 department of co...
  • 9 篇 center for speec...
  • 7 篇 department of co...
  • 7 篇 human language t...
  • 7 篇 department of el...
  • 7 篇 center for langu...
  • 7 篇 center for langu...
  • 6 篇 center for speec...
  • 6 篇 center for infor...
  • 6 篇 speechlab depart...
  • 6 篇 center for langu...
  • 6 篇 national enginee...

作者

  • 21 篇 plank barbara
  • 18 篇 zheng thomas fan...
  • 18 篇 yarowsky david
  • 17 篇 thomas fang zhen...
  • 15 篇 van der goot rob
  • 14 篇 khudanpur sanjee...
  • 12 篇 wang dong
  • 12 篇 sanjeev khudanpu...
  • 11 篇 callison-burch c...
  • 11 篇 eisner jason
  • 9 篇 schütze hinrich
  • 9 篇 lei xie
  • 9 篇 koehn philipp
  • 9 篇 cotterell ryan
  • 8 篇 du xiaojiang
  • 8 篇 smith noah a.
  • 8 篇 zhu liehuang
  • 8 篇 watanabe shinji
  • 7 篇 li zhifei
  • 7 篇 dredze mark

语言

  • 424 篇 英文
  • 11 篇 其他
  • 5 篇 中文
检索条件"机构=Department of Computer Science and Center for Language and Speech Processing"
438 条 记 录,以下是311-320 订阅
排序:
Improving Chinese POS Tagging with Dependency Parsing  5
Improving Chinese POS Tagging with Dependency Parsing
收藏 引用
5th International Joint Conference on Natural language processing, IJCNLP 2011
作者: Li, Zhenghua Che, Wanxiang Liu, Ting Research Center for Social Computing and Information Retrieval MOE-Microsoft Key Laboratory of Natural Language Processing and Speech School of Computer Science and Technology Harbin Institute of Technology China
Recent research usually models POS tagging as a sequential labeling problem, in which only local context features can be used. Due to the lack of morphological inflections, many tagging ambiguities in Chinese are diff... 详细信息
来源: 评论
Word Sense Disambiguation Corpora Acquisition via Confirmation Code  5
Word Sense Disambiguation Corpora Acquisition via Confirmati...
收藏 引用
5th International Joint Conference on Natural language processing, IJCNLP 2011
作者: Che, Wanxiang Liu, Ting Research Center for Social Computing and Information Retrieval MOE-Microsoft Key Laboratory of Natural Language Processing and Speech School of Computer Science and Technology Harbin Institute of Technology China
Word Sense Disambiguation (WSD) is one of the fundamental natural language processing tasks. However, lack of training corpora is a bottleneck to construct a high accurate all-words WSD system. Annotating a large-scal... 详细信息
来源: 评论
Generating Chinese Named Entity Data from a Parallel Corpus  5
Generating Chinese Named Entity Data from a Parallel Corpus
收藏 引用
5th International Joint Conference on Natural language processing, IJCNLP 2011
作者: Fu, Ruiji Qin, Bing Liu, Ting Research Center for Social Computing and Information Retrieval MOE-Microsoft Key Laboratory of Natural Language Processing and Speech School of Computer Science and Technology Harbin Institute of Technology Harbin China
Annotating Named Entity Recognition (NER) training corpora is a costly process but necessary for supervised NER systems. This paper presents an approach to generate large-scale Chinese NER training data from an Englis... 详细信息
来源: 评论
Randomized maximum entropy language models
Randomized maximum entropy language models
收藏 引用
2011 IEEE Workshop on Automatic speech Recognition and Understanding, ASRU 2011
作者: Xu, Puyang Khudanpur, Sanjeev Gunawardana, Asela Department of Electrical and Computer Engineering Center of Language and Speech Processing Johns Hopkins University Baltimore MD 21218 United States Microsoft Research Redmond WA 98052 United States
We address the memory problem of maximum entropy language models(MELM) with very large feature sets. Randomized techniques are employed to remove all large, exact data structures in MELM implementations. To avoid the ... 详细信息
来源: 评论
Efficient subsampling for training complex language models
Efficient subsampling for training complex language models
收藏 引用
Conference on Empirical Methods in Natural language processing, EMNLP 2011
作者: Xu, Puyang Gunawardana, Asela Khudanpur, Sanjeev Department of Electrical and Computer Engineering Center for Language and Speech Processing Johns Hopkins University Baltimore MD 21218 United States Microsoft Research Redmond WA 98052 United States
We propose an efficient way to train maximum entropy language models (MELM) and neural network language models (NNLM). The advantage of the proposed method comes from a more robust and efficient subsampling technique.... 详细信息
来源: 评论
Asymmetric acoustic model for accented speech recognition
Asymmetric acoustic model for accented speech recognition
收藏 引用
Asia-Pacific Signal and Information processing Association Annual Summit and Conference 2011, APSIPA ASC 2011
作者: Zhang, Chao Liu, Yi Zheng, Thomas Fang Tsinghua National Laboratory for Information Science and Technology Division of Technology Innovation and Development Center for Speech and Language Technologies Beijing China Department of Computer Science and Technology Tsinghua University Beijing China
We propose to improve accented speech recognition performance by using asymmetric acoustic model. Our proposed model is generated based on reliable accent specific units and acoustic model reconstruction. The reliable... 详细信息
来源: 评论
Radial Gaussianization with cluster-specific bias compensation
Radial Gaussianization with cluster-specific bias compensati...
收藏 引用
IEEE/SP Workshop on Statistical Signal processing (SSP)
作者: Shuai Huang Damianos Karakos Daguang Xu Center of Language and Speech Processing Department of Electrical and Computer Engineering Johns Hopkins University Baltimore MD USA Human Language Technology Center of Excellence Center of Language and Speech Processing Department of Electrical and Computer Engineering Johns Hopkins University Baltimore MD USA
In recent work, Lyu and Simoncelli [1] introduced radial Gaussianization (RG) as a very efficient procedure for transforming n-dimensional random vectors into Gaussian vectors with independent and identically distribu... 详细信息
来源: 评论
An in-car Chinese noise corpus for speech recognition
An in-car Chinese noise corpus for speech recognition
收藏 引用
2011 International Conference on Asian language processing, IALP 2011
作者: Hou, Jue Liu, Yi Zhang, Chao Huang, Shilei Center for Speech and Language Technologies Division of Technology Innovation and Development Tsinghua National Laboratory for Information Science and Technology Beijing China Department of Computer Science and Technology Tsinghua University Beijing China Shenzhen Key Laboratory of Intelligent Media and Speech Shenzhen China
In this paper, we present an in-car Chinese noise corpus that can be used in simulating complicated car environment for robust speech recognition research and experiment. The corpus was collected in mainland China in ... 详细信息
来源: 评论
MULTILAYER PERCEPTRON WITH SPARSE HIDDEN OUTPUTS FOR PHONEME RECOGNITION
MULTILAYER PERCEPTRON WITH SPARSE HIDDEN OUTPUTS FOR PHONEME...
收藏 引用
IEEE International Conference on Acoustics, speech and Signal processing
作者: G.S.V.S. Sivaram Hynek Hermansky Department of Electrical & Computer Engineering Center of Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University USA
This paper introduces the sparse multilayer perceptron (SMLP) which learns the transformation from the inputs to the targets as in multilayer perceptron (MLP) while the outputs of one of the internal hidden layers is ... 详细信息
来源: 评论
Multistream robust speaker recognition based on speech intelligibility
Multistream robust speaker recognition based on speech intel...
收藏 引用
Annual Conference on Information sciences and Systems (CISS)
作者: Sridhar Krishna Nemala Mounya Elhilali Department of Electrical and Computer Engineering Center for Speech and Language Processing Johns Hopkins University Baltimore MD USA
Delimiting the most informative voice segments of an acoustic signal is often a crucial initial step for any speech processing system. In the current work, we propose a novel segmentation approach based on a perceptio... 详细信息
来源: 评论