咨询与建议

限定检索结果

文献类型

  • 292 篇 会议
  • 144 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 439 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 295 篇 工学
    • 218 篇 计算机科学与技术...
    • 188 篇 软件工程
    • 81 篇 信息与通信工程
    • 32 篇 生物工程
    • 21 篇 控制科学与工程
    • 17 篇 仪器科学与技术
    • 16 篇 生物医学工程(可授...
    • 15 篇 化学工程与技术
    • 14 篇 电子科学与技术(可...
    • 9 篇 机械工程
    • 8 篇 电气工程
    • 6 篇 光学工程
    • 5 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
  • 170 篇 理学
    • 95 篇 物理学
    • 69 篇 数学
    • 38 篇 统计学(可授理学、...
    • 37 篇 生物学
    • 15 篇 化学
    • 13 篇 系统科学
  • 72 篇 管理学
    • 51 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 12 篇 医学
    • 11 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 10 篇 文学
    • 8 篇 外国语言文学
    • 7 篇 中国语言文学
  • 9 篇 法学
    • 8 篇 社会学
  • 7 篇 农学
    • 5 篇 作物学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 49 篇 speech recogniti...
  • 24 篇 speech
  • 21 篇 hidden markov mo...
  • 21 篇 training
  • 19 篇 speech processin...
  • 14 篇 acoustics
  • 13 篇 decoding
  • 13 篇 natural language...
  • 12 篇 computational mo...
  • 11 篇 signal processin...
  • 9 篇 computational li...
  • 9 篇 databases
  • 9 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 syntactics
  • 8 篇 automatic speech...
  • 7 篇 training data
  • 7 篇 testing
  • 7 篇 speaker recognit...
  • 6 篇 machine translat...

机构

  • 27 篇 department of co...
  • 24 篇 center for langu...
  • 21 篇 department of co...
  • 18 篇 department of co...
  • 16 篇 mainlp center fo...
  • 12 篇 munich
  • 11 篇 department of co...
  • 9 篇 center for infor...
  • 9 篇 department of co...
  • 9 篇 center for speec...
  • 7 篇 department of co...
  • 7 篇 human language t...
  • 7 篇 department of el...
  • 7 篇 center for langu...
  • 7 篇 center for langu...
  • 6 篇 center for speec...
  • 6 篇 center for infor...
  • 6 篇 speechlab depart...
  • 6 篇 center for langu...
  • 6 篇 national enginee...

作者

  • 21 篇 plank barbara
  • 18 篇 zheng thomas fan...
  • 18 篇 yarowsky david
  • 17 篇 thomas fang zhen...
  • 15 篇 van der goot rob
  • 14 篇 khudanpur sanjee...
  • 12 篇 wang dong
  • 12 篇 sanjeev khudanpu...
  • 11 篇 callison-burch c...
  • 11 篇 eisner jason
  • 9 篇 schütze hinrich
  • 9 篇 lei xie
  • 9 篇 koehn philipp
  • 9 篇 cotterell ryan
  • 8 篇 du xiaojiang
  • 8 篇 smith noah a.
  • 8 篇 zhu liehuang
  • 8 篇 watanabe shinji
  • 7 篇 li zhifei
  • 7 篇 dredze mark

语言

  • 416 篇 英文
  • 20 篇 其他
  • 5 篇 中文
检索条件"机构=Department of Computer Science and Center for Language and Speech Processing"
439 条 记 录,以下是401-410 订阅
排序:
Maximum entropy modeling in sparse semantic tagging
Maximum entropy modeling in sparse semantic tagging
收藏 引用
2004 Human language Technology Conference of the North American Chapter of the Association for Computational Linguistics - Student Research Workshop, HLT-NAACL 2004
作者: Cui, Jia Guthrie, David Center for Language and Speech Processing Johns Hopkins University BaltimoreMD21210 United States Department of Computer Science University of Sheffield SheffieldS1 4DP United Kingdom
In this work, we are concerned with a coarse grained semantic analysis over sparse data, which labels all nouns with a set of semantic categories. To get the benefit of unlabeled data, we propose a bootstrapping frame... 详细信息
来源: 评论
Detection of voice onset time (VOT) for unvoived stops (/p/, /t/, /k/) using the teager energy operator (TEO) for automatic detection of accented english
Detection of voice onset time (VOT) for unvoived stops (/p/,...
收藏 引用
Proceedings of the 6th Nordic Signal processing Symposium, NORSIG 2004
作者: Das, Sharmistha Hansen, John H.L. Department of Speech Science University of Colorado Boulder CO 80309-0594 United States Robust Speech Processing Group Center for Spoken Language Research University of Colorado Boulder CO 80309-0594 United States
Voice Onset Time (VOT) is an important temporal feature in speech perception and speech recognition. It also benefits for accent detection[1,2]. Fixed length frame based speech processing inherently ignores VOT. In th... 详细信息
来源: 评论
Using random forests in the structured language model  04
Using random forests in the structured language model
收藏 引用
Proceedings of the 18th International Conference on Neural Information processing Systems
作者: Peng Xu Frederick Jelinek Center for Language and Speech Processing Department of Electrical and Computer Engineering The Johns Hopkins University
In this paper, we explore the use of Random Forests (RFs) in the structured language model (SLM), which uses rich syntactic information in predicting the next word based on words already seen. The goal in this work is...
来源: 评论
Effects of Spectro-Temporal Asynchrony in Auditory and Auditory-Visual speech processing
收藏 引用
Seminars in Hearing 2004年 第3期25卷 241-255页
作者: Ken W. Grant Steven Greenberg David Poeppel Virginie van Wassenhove 1 Auditory-Visual Speech Recognition Laboratory Walter Reed Army Medical Center Army Audiology and Speech Center Washington District of Columbia 2 International Computer Speech Institute Berkeley California 3 Cognitive Neuroscience of Language Laboratory Neuroscience and Cognitive Science Program (NACS) Department of Biology and Department of Linguistics University of Maryland College Park Maryland
来源: 评论
Automatic enrichment of a very large dictionary of word combinations on the basis of dependency formalism
收藏 引用
3rd Mexican International Conference on Artificial Intelligence, MICAI 2004
作者: Gelbukh, Alexander Sidorov, Grigori Han, San-Yong Hernández-Rubio, Erika Natural Language and Text Processing Laboratory Center for Computing Research National Polytechnic Institute Av. Juan Dios Batiz s/n Zacatenco Mexico City07738 Mexico Department of Computer Science and Engineering Chung-Ang University 221 Huksuk-Dong DongJak-Ku Seoul156-756 Korea Republic of
The paper presents a method of automatic enrichment of a very large dictionary of word combinations. The method is based on results of automatic syntactic analysis (parsing) of sentences. The dependency formalism is u... 详细信息
来源: 评论
speechFIND: spoken document retrieval for a national gallery of the spoken word
SPEECHFIND: spoken document retrieval for a national gallery...
收藏 引用
Proceedings of the Nordic Signal processing Symposium (NORSIG)
作者: J.H.L. Hansen Rongqing Huang P. Mangalath Bowen Zhou M. Seadle J.R. Deller Robust Speech Processing Group Center for Spoken Language Research University of Colorado Boulder CO USA Michigan State University East Lansing MI USA Department Electrical & Computer Engineering Michigan State University East Lansing MI USA
来源: 评论
Automatic recognition of spontaneous speech for access to multilingual oral history archives
Automatic recognition of spontaneous speech for access to mu...
收藏 引用
作者: Byrne, William Doermann, David Franz, Martin Gustman, Samuel Hajič, Jan Oard, Douglas Picheny, Michael Psutka, Josef Ramabhadran, Bhuvana Soergel, Dagobert Ward, Todd Zhu, Wei-Jing Ctr. for Lang. and Speech Processing Department of Electrical Engineering Johns Hopkins University Baltimore MD 21218 United States Inst. for Advanced Computer Studies University of Maryland College Park MD 20742 United States Natural Language Systems Department IBM T. J. Watson Research Center Yorktown Heights NY 10598 United States Survivors Shoah Vis. Hist. Found. Los Angeles CA 90078 United States Inst. of Formal/Applied Linguistics Center for Computational Linguistics Charles University CZ-11800 Prague 1 Czech Republic Inst. for Advanced Computer Studies College of Information Studies University of Maryland College Park MD 20742 United States Hum. Lang. Technologies Department IBM T. J. Watson Research Center Yorktown Heights NY 10598 United States Department of Cybernetics Center for Computational Linguistics University of West Bohemia CZ-30614 Pilsen Czech Republic College of Information Studies University of Maryland College Park MD 20742 United States
Much is known about the design of automated systems to search broadcast news, but it has only recently become possible to apply similar techniques to large collections of spontaneous speech. This paper presents initia... 详细信息
来源: 评论
Forward-decoding kernel-based phone sequence recognition  15
Forward-decoding kernel-based phone sequence recognition
收藏 引用
16th Annual Neural Information processing Systems Conference, NIPS 2002
作者: Chakrabartty, Shantanu Cauwenberghs, Gert Center for Language and Speech Processing Department of Electrical and Computer Engineering Johns Hopkins University Baltimore MD 21218 United States
Forward decoding kernel machines (FDKM) combine large-margin classifiers with hidden Markov models (HMM) for maximum a posteriori (MAP) adaptive sequence estimation. State transitions in the sequence are conditioned o... 详细信息
来源: 评论
Word-selective training for speech recognition
Word-selective training for speech recognition
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding
作者: T.M. Kamm G.G.L. Meyer Center for Language and Speech Processing Department of Electrical and Computer Engineering Johns Hopkins University Baltimore MD USA
We previously proposed (Kamm and Meyer (2001, 2002)) a two-pronged approach to improve system performance by selective use of training data. We demonstrated a sentence-selective algorithm that, first, made effective u... 详细信息
来源: 评论
Evaluating sense disambiguation across diverse parameter spaces
收藏 引用
Natural language Engineering 2002年 第4期8卷 293-310页
作者: Yarowsky, David Florian, Radu Department of Computer Science and Center for Language and Speech Processing Johns Hopkins University MD 21218 United States
This paper presents a comprehensive empirical exploration and evaluation of a diverse range of data characteristics which influence word sense disambiguation performance. It focuses on a set of six core supervised alg...
来源: 评论