This system provides a comprehensive overview of hospital environments by tracking air quality, dust, temperature, and humidity simultaneously, offering a more complete picture of indoor conditions than systems that f...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease ...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease diagnosis has demonstrated commendable effectiveness in promptly diagnosing patients and curbing infection transmission. The study introduces a deep learning-based model tailored for COVID-19 detection, leveraging three prevalent medical imaging modalities: computed tomography (CT), chest X-ray (CXR), and Ultrasound. Various deep Transfer Learning Convolutional Neural Network-based (CNN) models have undergone assessment for each imaging modality. For each imaging modality, this study has selected the two most accurate models based on evaluation metrics such as accuracy and loss. Additionally, efforts have been made to prune unnecessary weights from these models to obtain more efficient and sparse models. By fusing these pruned models, enhanced performance has been achieved. The models have undergone rigorous training and testing using publicly available real-world medical datasets, focusing on classifying these datasets into three distinct categories: Normal, COVID-19 Pneumonia, and non-COVID-19 Pneumonia. The primary objective is to develop an optimized and swift model through strategies like Transfer Learning, Ensemble Learning, and reducing network complexity, making it easier for storage and transfer. The results of the trained network on test data exhibit promising outcomes. The accuracy of these models on the CT scan, X-ray, and ultrasound datasets stands at 99.4%, 98.9%, and 99.3%, respectively. Moreover, these models’ sizes have been substantially reduced and optimized by 51.93%, 38.00%, and 69.07%, respectively. This study proposes a computer-aided-coronavirus-detection system based on three standard medical imaging techniques. The intention is to assist radiologists in accurately and swiftly diagnosing the disease, especially during the screen
This paper presents a novel medical imaging framework, Efficient Parallel Deep Transfer SubNet+-based Explainable Model (EPDTNet + -EM), designed to improve the detection and classification of abnormalities in medical...
详细信息
Without proper security mechanisms, medical records stored electronically can be accessed more easily than physical files. Patient health information is scattered throughout the hospital environment, including laborat...
详细信息
Without proper security mechanisms, medical records stored electronically can be accessed more easily than physical files. Patient health information is scattered throughout the hospital environment, including laboratories, pharmacies, and daily medical status reports. The electronic format of medical reports ensures that all information is available in a single place. However, it is difficult to store and manage large amounts of data. Dedicated servers and a data center are needed to store and manage patient data. However, self-managed data centers are expensive for hospitals. Storing data in a cloud is a cheaper alternative. The advantage of storing data in a cloud is that it can be retrieved anywhere and anytime using any device connected to the Internet. Therefore, doctors can easily access the medical history of a patient and diagnose diseases according to the context. It also helps prescribe the correct medicine to a patient in an appropriate way. The systematic storage of medical records could help reduce medical errors in hospitals. The challenge is to store medical records on a third-party cloud server while addressing privacy and security concerns. These servers are often semi-trusted. Thus, sensitive medical information must be protected. Open access to records and modifications performed on the information in those records may even cause patient fatalities. Patient-centric health-record security is a major concern. End-to-end file encryption before outsourcing data to a third-party cloud server ensures security. This paper presents a method that is a combination of the advanced encryption standard and the elliptical curve Diffie-Hellman method designed to increase the efficiency of medical record security for users. Comparisons of existing and proposed techniques are presented at the end of the article, with a focus on the analyzing the security approaches between the elliptic curve and secret-sharing methods. This study aims to provide a high level of s
Implementing defensive deception in the cloud is promising to proactively counter reconnaissance attack. This technique presents decoys to camouflage cloud assets and distracts attack resource. However,the major chall...
详细信息
Implementing defensive deception in the cloud is promising to proactively counter reconnaissance attack. This technique presents decoys to camouflage cloud assets and distracts attack resource. However,the major challenge is to develop an effective deception strategy to orchestrate digital decoys. To address this issue, we propose a deep reinforcement learning(DRL)-based defensive deception framework. First,we formulate a utility function, which mathematically models underlying threats associated with common vulnerabilities among virtual machines in the cloud. Then, we customize training interfaces and the neural networks for a DRL agent. The reward function reflects the effectiveness of asset concealment and the waste of attack resources, referring to a comprehensive defense goal. Finally, the well-trained DRL agent generates the optimal defense strategy. It specifies a more granular deception strategy than existing proposals. Simulation results show that the proposed framework leads to a 7.87% average advantage in realizing the comprehensive defense goal. Moreover, it can stably improve the concealment degree of cloud assets up to 20.58%, and increase the attack cost up to 40.40%. This study shows that it is promising to improve cloud security with deception defense and artificial intelligence techniques.
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common *** ofmedical images is very important to secure patient *** these images consumes a lot of time onedge computing;theref...
详细信息
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common *** ofmedical images is very important to secure patient *** these images consumes a lot of time onedge computing;therefore,theuse of anauto-encoder for compressionbefore encodingwill solve such a *** this paper,we use an auto-encoder to compress amedical image before encryption,and an encryption output(vector)is sent out over the *** the other hand,a decoder was used to reproduce the original image back after the vector was received and *** convolutional neural networks were conducted to evaluate our proposed approach:The first one is the auto-encoder,which is utilized to compress and encrypt the images,and the other assesses the classification accuracy of the image after decryption and *** hyperparameters of the encoder were tested,followed by the classification of the image to verify that no critical information was lost,to test the encryption and encoding *** this approach,sixteen hyperparameter permutations are utilized,but this research discusses three main cases in *** first case shows that the combination of Mean Square Logarithmic Error(MSLE),ADAgrad,two layers for the auto-encoder,and ReLU had the best auto-encoder results with a Mean Absolute Error(MAE)=0.221 after 50 epochs and 75%classification with the best result for the classification *** second case shows the reflection of auto-encoder results on the classification results which is a combination ofMean Square Error(MSE),RMSprop,three layers for the auto-encoder,and ReLU,which had the best classification accuracy of 65%,the auto-encoder gives MAE=0.31 after 50 *** third case is the worst,which is the combination of the hinge,RMSprop,three layers for the auto-encoder,and ReLU,providing accuracy of 20%and MAE=0.485.
The advancement of automated number plate recognition (ANPR) systems has garnered noteworthy attention in recent times owing to their diverse applications across multiple domains, including traffic management, parking...
详细信息
The overgeneralisation may happen because most studies on data publishing for multiple sensitive attributes(SAs)have not considered the personalised privacy ***,sensitive information disclosure may also be caused by t...
详细信息
The overgeneralisation may happen because most studies on data publishing for multiple sensitive attributes(SAs)have not considered the personalised privacy ***,sensitive information disclosure may also be caused by these personalised *** address the matter,this article develops a personalised data publishing method for multiple *** to the requirements of individuals,the new method partitions SAs values into two categories:private values and public values,and breaks the association between them for privacy *** the private values,this paper takes the process of anonymisation,while the public values are released without this *** algorithm is designed to achieve the privacy mode,where the selectivity is determined by the sensitive value frequency and undesirable *** experimental results show that the proposed method can provide more information utility when compared with previous *** theoretic analyses and experiments also indicate that the privacy can be guaranteed even though the public values are known to an *** overgeneralisation and privacy breach caused by the personalised requirement can be avoided by the new method.
The growing realm of blockchain technology has captivated researchers and practitioners alike with its promise of decentralized, secure, and transparent transactions. This paper presents a comprehensive survey and ana...
详细信息
Portable document formats (PDFs) are widely used for document exchange due to their widespread usage and versatility. However, PDFs are highly vulnerable to malware attacks, which pose significant security risks. Exis...
详细信息
暂无评论