Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are v...
详细信息
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are vital in facilitating end-user communication ***,the security of Android systems has been challenged by the sensitive data involved,leading to vulnerabilities in mobile devices used in 5G *** vulnerabilities expose mobile devices to cyber-attacks,primarily resulting from security ***-permission apps in Android can exploit these channels to access sensitive information,including user identities,login credentials,and geolocation *** such attack leverages"zero-permission"sensors like accelerometers and gyroscopes,enabling attackers to gather information about the smartphone's *** underscores the importance of fortifying mobile devices against potential future *** research focuses on a new recurrent neural network prediction model,which has proved highly effective for detecting side-channel attacks in mobile devices in 5G *** conducted state-of-the-art comparative studies to validate our experimental *** results demonstrate that even a small amount of training data can accurately recognize 37.5%of previously unseen user-typed ***,our tap detection mechanism achieves a 92%accuracy rate,a crucial factor for text *** findings have significant practical implications,as they reinforce mobile device security in 5G networks,enhancing user privacy,and data protection.
Recommender systems play an essential role in decision-making in the information age by reducing information overload via retrieving the most relevant information in various applications. They also present great oppor...
详细信息
With the advancement of Artificial Intelligence(AI)technology,traditional industrial systems are undergoing an intelligent transformation,bringing together advanced computing,communication and control technologies,Mac...
详细信息
With the advancement of Artificial Intelligence(AI)technology,traditional industrial systems are undergoing an intelligent transformation,bringing together advanced computing,communication and control technologies,Machine Learning(ML)-based intelligentmodelling has become a newparadigm for solving problems in the industrial domain[1–3].With numerous applications and diverse data types in the industrial domain,algorithmic and data-driven ML techniques can intelligently learn potential correlations between complex data and make efficient decisions while reducing human ***,in real-world application scenarios,existing algorithms may have a variety of limitations,such as small data volumes,small detection targets,low efficiency,and algorithmic gaps in specific application domains[4].Therefore,many new algorithms and strategies have been proposed to address the challenges in industrial applications[5–8].
Smart agriculture systems leverage the possibilities offered by cutting-edge technologies such as IoT, AI, and remote sensing to revolutionize conventional farming by enhancing resource utilization, production, and cr...
详细信息
ISBN:
(纸本)9798331509675
Smart agriculture systems leverage the possibilities offered by cutting-edge technologies such as IoT, AI, and remote sensing to revolutionize conventional farming by enhancing resource utilization, production, and crop damage mitigation. Real-time monitoring of soil and crop health, predictive analytics, pest control, and precision irrigation measures are all enabled by these systems. They are able to address major Indian agriculture issues, consequently boosting yield and profitability and promoting environmental sustainability. The largescale deployment of intelligent agriculture systems will change the agriculture landscape in India and will assure long-term food security for an ever-growing population. Challenges include adequate research and future studies in order to better install and achieve smart agricultural systems to protect crops. Intelligent agriculture involves all advanced research, including science and innovations, in national development through space technologies to enhance soil quality, conserve water, and facilitate agriculture information. Space ventures will undergo improved modernization through the introduction of crop sprayers, precision gene editors, epigenetics, big data analytics, IoT, wind and photovoltaic smart energy, AI-enabled robotic applications, and wide-scale desalination technologies. Implementing digital farming systems in developing economies will help their sectors as 85 percent of the global population is set to live in developing countries by 2030. Automation will prove to be necessary since food scarcity is on the rise along with resource wastage. Control strategies such as the IoT, aerial imagery, machine learning, and artificial intelligence will boost production and prevent soil degradation. These advanced technologies are also able to alleviate such issues as plant disease detection, pesticide management, and water application. The introduction of the Internet of Things in the agricultural research world has started
As a new and potentially devastating form of cyberattack, ‘Phishing’ URLs pose a risk to users by impersonating legitimate websites in an effort to obtain sensitive information such as usernames, passwords, and fina...
详细信息
In recent decades,several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during trans-mission to a shorter distance while restricting the Primary Us...
详细信息
In recent decades,several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during trans-mission to a shorter distance while restricting the Primary Users(PUs)*** Cognitive Radio(CR)system is based on the Adaptive Swarm Distributed Intelligent based Clustering algorithm(ASDIC)that shows better spectrum sensing among group of multiusers in terms of sensing error,power sav-ing,and convergence *** this research paper,the proposed ASDIC algorithm develops better energy efficient distributed cluster based sensing with the optimal number of clusters on their *** this research,multiple random Sec-ondary Users(SUs),and PUs are considered for ***,the pro-posed ASDIC algorithm improved the convergence speed by combining the multi-users clustered communication compared to the existing optimization *** results showed that the proposed ASDIC algorithm reduced the node power of 9.646%compared to the existing ***,ASDIC algorithm reduced 24.23%of SUs average node power compared to the existing *** of detection is higher by reducing the Signal-to-Noise Ratio(SNR)to 2 dB *** proposed ASDIC delivers low false alarm rate compared to other existing optimization algorithms in the primary *** results showed that the proposed ASDIC algorithm effectively solves the multimodal optimization problems and maximizes the performance of net-work capacity.
Purpose: The development of an automated premature ventricular contraction (PVC) detection system has significant implications for early intervention and treatment decisions. This study aims to develop a novel approac...
详细信息
Hearing and Speech impairment can be congenital or *** and speech-impaired students often hesitate to pursue higher education in reputable institutions due to their ***,the development of automated assistive learning ...
详细信息
Hearing and Speech impairment can be congenital or *** and speech-impaired students often hesitate to pursue higher education in reputable institutions due to their ***,the development of automated assistive learning tools within the educational field has empowered disabled students to pursue higher education in any field of *** learning devices enable students to access institutional resources and facilities *** proposed assistive learning and communication tool allows hearing and speech-impaired students to interact productively with their teachers and *** tool converts the audio signals into sign language videos for the speech and hearing-impaired to follow and converts the sign language to text format for the teachers to *** educational tool for the speech and hearing-impaired is implemented by customized deep learning models such as Convolution neural networks(CNN),Residual neural Networks(ResNet),and stacked Long short-term memory(LSTM)network *** assistive learning tool is a novel framework that interprets the static and dynamic gesture actions in American Sign Language(ASL).Such communicative tools empower the speech and hearing impaired to communicate effectively in a classroom environment and foster *** deep learning models were developed and experimentally evaluated with the standard performance *** model exhibits an accuracy of 99.7% for all static gesture classification and 99% for specific vocabulary of gesture action *** two-way communicative and educational tool encourages social inclusion and a promising career for disabled students.
In recent times, recognizing hand gestures from a sign image has become a vital research field in the areas of computer vision and human-computer interaction. Many researchers have taken advantage of various features ...
详细信息
Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can...
详细信息
Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can potentially address these problems by allowing systems trained on labelled datasets from the source domain(including less expensive synthetic domain)to be adapted to a novel target *** conventional approach involves automatic extraction and alignment of the representations of source and target domains *** limitation of this approach is that it tends to neglect the differences between classes:representations of certain classes can be more easily extracted and aligned between the source and target domains than others,limiting the adaptation over all ***,we address:this problem by introducing a Class-Conditional Domain Adaptation(CCDA)*** incorporates a class-conditional multi-scale discriminator and class-conditional losses for both segmentation and ***,they measure the segmentation,shift the domain in a classconditional manner,and equalize the loss over *** results demonstrate that the performance of our CCDA method matches,and in some cases,surpasses that of state-of-the-art methods.
暂无评论