This paper introduces a novel spatial attention neural architecture search network (SANAS-Net), which incorporates a spatial attention mechanism to enhance the model’s ability to focus on critical regions within mamm...
详细信息
Due to the dynamic nature and node mobility,assuring the security of Mobile Ad-hoc Networks(MANET)is one of the difficult and challenging tasks *** MANET,the Intrusion Detection System(IDS)is crucial because it aids i...
详细信息
Due to the dynamic nature and node mobility,assuring the security of Mobile Ad-hoc Networks(MANET)is one of the difficult and challenging tasks *** MANET,the Intrusion Detection System(IDS)is crucial because it aids in the identification and detection of malicious attacks that impair the network’s regular *** machine learning and deep learning methodologies are used for this purpose in the conventional works to ensure increased security of ***,it still has significant flaws,including increased algorithmic complexity,lower system performance,and a higher rate of ***,the goal of this paper is to create an intelligent IDS framework for significantly enhancing MANET security through the use of deep learning ***,the min-max normalization model is applied to preprocess the given cyber-attack datasets for normalizing the attributes or fields,which increases the overall intrusion detection performance of ***,a novel Adaptive Marine Predator Optimization Algorithm(AOMA)is implemented to choose the optimal features for improving the speed and intrusion detection performance of ***,the Deep Supervise Learning Classification(DSLC)mechanism is utilized to predict and categorize the type of intrusion based on proper learning and training *** evaluation,the performance and results of the proposed AOMA-DSLC based IDS methodology is validated and compared using various performance measures and benchmarking datasets.
Particles in the atmosphere, such as dust and smoke, can cause visual clarity problems in both images and videos. Haze is the result of the interaction between airborne particles and light, which is scattered and atte...
详细信息
Particles in the atmosphere, such as dust and smoke, can cause visual clarity problems in both images and videos. Haze is the result of the interaction between airborne particles and light, which is scattered and attenuated. Hazy media present difficulties in a variety of applications due to the reduced contrast and loss of essential information. In response, dehazing techniques have been introduced to bring hazy videos and images back to clarity. Here, we provide a novel technique for eliminating haze. It comprises preprocessing steps before dehazing. Preprocessing is applied to hazy images through homomorphic processing and Contrast Limited Adaptive Histogram Equalization (CLAHE). We present a dehazing technique referred to as the pre-trained Feature Fusion Attention Network (FFA-Net) that directly lets dehazed images be restored from hazy or preprocessed hazy inputs without requiring the determination of atmospheric factors, such as air light and transmission maps. The FFA-Net architecture incorporates a Feature Attention (FA) method to do this task. We assess the proposed technique in a variety of circumstances, including visible frames, Near-Infrared (NIR) frames, and real-world hazy images. Evaluation criteria like entropy, correlation, and Peak Signal-to-Noise Ratio (PSNR) are used to compare the quality of dehazed frames or images to their hazy counterparts. Furthermore, histogram analysis and spectral entropy are adopted to determine the effectiveness of the proposed technique in comparison to existing dehazing techniques. Comparative results are presented for both real-world and simulated environments. The benefits of the proposed technique are demonstrated by a comparison of the results obtained from the standalone pre-trained FFA-Net and the proposed comprehensive methodology. Moreover, a thorough assessment is carried out for comparing the effectiveness of the proposed FFA-Net technique to those of some current dehazing techniques on real hazy images. T
Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)***,conventional mode-based authentication methods(e.g.,passwords and smart cards)ma...
详细信息
Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)***,conventional mode-based authentication methods(e.g.,passwords and smart cards)may be vulnerable to a broad range of attacks(e.g.,eavesdropping and side-channel attacks).Hence,there have been attempts to design biometric-based authentication solutions,which rely on physiological and behavioral *** characteristics need continuous monitoring and specific environmental settings,which can be challenging to implement in ***,we can also leverage Artificial Intelligence(AI)in the extraction and classification of physiological characteristics from IoT devices processing to facilitate ***,we review the literature on the use of AI in physiological characteristics recognition pub-lished after *** use the three-layer architecture of the IoT(i.e.,sensing layer,feature layer,and algorithm layer)to guide the discussion of existing approaches and their *** also identify a number of future research opportunities,which will hopefully guide the design of next generation solutions.
Purpose: Coronavirus disease 2019 (COVID-19) has infected about 418 million people across the globe. So, the analysis of biomedical imaging accompanied with artificial intelligence (AI) approaches has transpired a vit...
详细信息
Purpose: Coronavirus disease 2019 (COVID-19) has infected about 418 million people across the globe. So, the analysis of biomedical imaging accompanied with artificial intelligence (AI) approaches has transpired a vital role in diagnosing COVID-19. Until now, numerous classification approaches have been demonstrated for the detection of COVID-19. The assessment of COVID-19 patients according to severity level is not so far investigated. For this motivation, the classification of COVID-19 chest X-ray (CXR) images according to severity of the infection is presented in this work. Methods: Primarily, the 1527 CXR images are pre-processed to reshape images into unique size, denoised, and enhanced images through median filter and histogram equalization (HE) techniques, respectively. Afterward, reshaped, denoised, and enhanced CXR images are augmented using synthetic minority oversampling technique (SMOTE) to achieve the balanced dataset of 1752 CXR images. After augmentation, a pre-trained VGG16 and residual network 50 (Resnet50) deep transfer learning models with random forest (RF) and support vector machine (SVM) classifiers are utilized for feature extraction and classification of 1752 CXR images into diverse class labels such as normal, severe COVID-19, and non-severe COVID-19. Results: Our proposed ResNet50 model with SVM classifier provides the highest accuracy of about 95% for severity assessment and classification of COVID-19 CXR images as compared to other permutations. For the ResNet50 model with SVM classifier model, the average value of precision, recall, and F1-score are 91%, 94%, and 92%, respectively. Conclusion: The multi-class classification deep transfer learning models are presented to determine the severity assessment and classification of COVID-19 by using CXR images. Out of these proposed models, the ResNet50 model with SVM classifier will be highly favorable for doctors to classify patients according to their severity assessment and detection of COV
The Metaverse depicts a parallel digitalized world where virtuality and reality are *** has economic and social systems like those in the real world and provides intelligent services and *** this paper,we introduce th...
详细信息
The Metaverse depicts a parallel digitalized world where virtuality and reality are *** has economic and social systems like those in the real world and provides intelligent services and *** this paper,we introduce the Metaverse from a new technology perspective,including its essence,corresponding technical framework,and potential technical ***,we analyze the essence of the Metaverse from its etymology and point out breakthroughs promising to be made in time,space,and contents of the Metaverse by citing Maslow's Hierarchy of ***,we conclude four pillars of the Metaverse,named ubiquitous connections,space convergence,virtuality and reality interaction,and human-centered communication,and establish a corresponding technical ***,we envision open issues and challenges of the Metaverse in the technical *** work proposes a new technology perspective of the Metaverse and will provide further guidance for its technology development in the future.
Research on voice recognition for African languages is limited due to the scarcity of digital resources for training and adaptation, despite its broad usefulness. The Hausa language, spoken by almost fifty million inh...
详细信息
In neurosurgery to remove brain tumors, DICOM data, a medical imaging standard, is generated preoperatively using CT and MRI. This data is used for surgical planning. However, brain deformation problems, known as brai...
详细信息
In this work, a novel methodological approach to multi-attribute decision-making problems is developed and the notion of Heptapartitioned Neutrosophic Set Distance Measures (HNSDM) is introduced. By averaging the Pent...
详细信息
Recently, lead-based perovskite solar cells (PSCs) grabbed the worldwide popularity in photovoltaic industry owing to its remarkable properties. Few challenges such as toxic elements, instability, low shelf life etc. ...
详细信息
暂无评论