Desertification greatly affects land deterioration, farming efficiency, economic growth, and health, especially in Gulf nations. Climate change has worsened desertification, making developmental issues in the area eve...
详细信息
Desertification greatly affects land deterioration, farming efficiency, economic growth, and health, especially in Gulf nations. Climate change has worsened desertification, making developmental issues in the area even more difficult. This research presents an enhanced framework utilizing the Internet of Things (IoT) for ongoing monitoring, data gathering, and analysis to evaluate desertification patterns. The framework utilizes Bayesian Belief Networks (BBN) to categorize IoT data, while a low-latency processing method on edge computing platforms enables effective detection of desertification trends. The classified data is subsequently analyzed using an Artificial Neural Network (ANN) optimized with a Genetic Algorithm (GA) for forecasting decisions. Using cloud computing infrastructure, the ANN-GA model examines intricate data connections to forecast desertification risk elements. Moreover, the Autoregressive Integrated Moving Average (ARIMA) model is employed to predict desertification over varied time intervals. Experimental simulations illustrate the effectiveness of the suggested framework, attaining enhanced performance in essential metrics: Temporal Delay (103.68 s), Classification Efficacy—Sensitivity (96.44 %), Precision (95.56 %), Specificity (96.97 %), and F-Measure (96.69 %)—Predictive Efficiency—Accuracy (97.76 %) and Root Mean Square Error (RMSE) (1.95 %)—along with Reliability (93.73 %) and Stability (75 %). The results of classification effectiveness and prediction performance emphasize the framework's ability to detect high-risk zones and predict the severity of desertification. This innovative method improves the comprehension of desertification processes and encourages sustainable land management practices, reducing the socio-economic impacts of desertification and bolstering at-risk ecosystems. The results of the study hold considerable importance for enhancing regional efforts in combating desertification, ensuring food security, and formulatin
Skin cancer,a severe health threat,can spread rapidly if ***,early detection can lead to an advanced and efficient diagnosis,thus reducing *** classification techniques analyse extensive skin image datasets,identifyin...
详细信息
Skin cancer,a severe health threat,can spread rapidly if ***,early detection can lead to an advanced and efficient diagnosis,thus reducing *** classification techniques analyse extensive skin image datasets,identifying patterns and anomalies without prior labelling,facilitating early detection and effective diagnosis and potentially saving *** this study,the authors aim to explore the potential of unsupervised learning methods in classifying different types of skin lesions in dermatoscopic *** authors aim to bridge the gap in dermatological research by introducing innovative techniques that enhance image quality and improve feature *** achieve this,enhanced super-resolution generative adversarial networks(ESRGAN)was fine-tuned to strengthen the resolution of skin lesion images,making critical features more *** authors extracted histogram features to capture essential colour characteristics and used the Davies-Bouldin index and silhouette score to determine optimal ***-tuned k-means clustering with Euclidean distance in the histogram feature space achieved 87.77% and 90.5% test accuracies on the ISIC2019 and HAM10000 datasets,*** unsupervised approach effectively categorises skin lesions,indicating that unsupervised learning can significantly advance dermatology by enabling early detection and classification without extensive manual annotation.
Severe Doppler shift and the obstruction of the line-of-sight (LoS) path significantly decrease the communication performance. This article considers a downlink channel estimation problem for reconfigurable intelligen...
详细信息
This systematic review seeks to evaluate the impact of CyRIS in ascertaining accurate implementation of projects with a primary focus on the merits of its functionalities. Core to the study is the view that CyRIS-driv...
详细信息
Regression testing of software systems is an important and critical activity yet expensive and resource-intensive. An approach to enhance its efficiency is Regression Test Selection (RTS), which selectively re-execute...
详细信息
Regression testing of software systems is an important and critical activity yet expensive and resource-intensive. An approach to enhance its efficiency is Regression Test Selection (RTS), which selectively re-executes a subset of relevant tests that are impacted by code modifications. Previous studies on static and dynamic RTS for Java software have shown that selecting tests at the class level is more effective than using finer granularities like methods or statements. Nevertheless, RTS at the package level, which is a coarser granularity than class level, has not been thoroughly investigated or evaluated for Java projects. To address this gap, we propose PKRTS, a static package-level RTS approach that utilizes the structural dependencies of the software system under test to construct a package-level dependency graph. PKRTS analyzes dependencies in the graph and identifies relevant tests that can reach modified packages, i.e., packages containing altered classes. In contrast to conventional static RTS techniques, PKRTS implicitly considers dynamic dependencies, such as Java reflection and virtual method calls, among classes belonging to the same package by treating all those classes as a single cohesive node in the dependency graph. We evaluated PKRTS on 885 revisions of 9 open-source Java projects, with its performance compared to Ekstazi, a state-of-the-art dynamic class-level approach, and STARTS, a state-of-the-art static class-level approach. We used Ekstazi as the baseline to measure the safety and precision violations of PKRTS and STARTS. The results indicated that PKRTS outperformed static class-level RTS in terms of safety violation, which measures the extent to which relevant test cases are missed. PKRTS showed an average safety violation of 2.29% compared to 5.94% safety violation of STARTS. Despite this, PKRTS demonstrated lower precision violation and lower reduction in test suite size than class-level RTS, as it selects higher number of irrelevant te
This paper proposed a fully LTPS-TFT-based bi-directional biomedical pixel interface with integrated a high linearity stimulator and a high-performance bio-potential sensing front-end circuit to amplify and digitize b...
详细信息
Airplanes are a social necessity for movement of humans,goods,and *** are generally safe modes of transportation;however,incidents and accidents occasionally *** prevent aviation accidents,it is necessary to develop a...
详细信息
Airplanes are a social necessity for movement of humans,goods,and *** are generally safe modes of transportation;however,incidents and accidents occasionally *** prevent aviation accidents,it is necessary to develop a machine-learning model to detect and predict commercial flights using automatic dependent surveillance–broadcast *** study combined data-quality detection,anomaly detection,and abnormality-classification-model *** research methodology involved the following stages:problem statement,data selection and labeling,prediction-model development,deployment,and *** data labeling process was based on the rules framed by the international civil aviation organization for commercial,jet-engine flights and validated by expert commercial *** results showed that the best prediction model,the quadratic-discriminant-analysis,was 93%accurate,indicating a“good fit”.Moreover,the model’s area-under-the-curve results for abnormal and normal detection were 0.97 and 0.96,respectively,thus confirming its“good fit”.
The proposed work objective is to adapt Online social networking (OSN) is a type of interactive computer-mediated technology that allows people to share information through virtual networks. The microblogging feature ...
详细信息
The proposed work objective is to adapt Online social networking (OSN) is a type of interactive computer-mediated technology that allows people to share information through virtual networks. The microblogging feature of Twitter makes cyberspace prominent (usually accessed via the dark web). The work used the datasets and considered the Scrape Twitter Data (Tweets) in Python using the SN-Scrape module and Twitter 4j API in JAVA to extract social data based on hashtags, which is used to select and access tweets for dataset design from a profile on the Twitter platform based on locations, keywords, and hashtags. The experiments contain two datasets. The first dataset has over 1700 tweets with a focus on location as a keypoint (hacking-for-fun data, cyber-violence data, and vulnerability injector data), whereas the second dataset only comprises 370 tweets with a focus on reposting of tweet status as a keypoint. The method used is focused on a new system model for analysing Twitter data and detecting terrorist attacks. The weights of susceptible keywords are found using a ternary search by the Aho-Corasick algorithm (ACA) for conducting signature and pattern matching. The result represents the ACA used to perform signature matching for assigning weights to extracted words of tweet. ML is used to evaluate Twitter data for classifying patterns and determining the behaviour to identify if a person is a terrorist. SVM (Support Vector Machine) proved to be a more accurate classifier for predicting terrorist attacks compared to other classifiers (KNN- K-Nearest Neighbour and NB-Naïve Bayes). The 1st dataset shows the KNN-Acc. -98.38% and SVM Accuracy as 98.85%, whereas the 2nd dataset shows the KNN-Acc. -91.68% and SVM Accuracy as 93.97%. The proposed work concludes that the generated weights are classified (cyber-violence, vulnerability injector, and hacking-for-fun) for further feature classification. Machine learning (ML) [KNN and SVM] is used to predict the occurrence and
Highways serve as vital connectors between cities, yet they often suffer from traffic congestion as the population continues to grow. Various intelligent frameworks or models for traffic status prediction have been em...
详细信息
Highways serve as vital connectors between cities, yet they often suffer from traffic congestion as the population continues to grow. Various intelligent frameworks or models for traffic status prediction have been employed in the Intelligent Transport System (ITS) to provide services for convenient and safe traveling, effective traffic management, and smart signal control. Most of these frameworks typically involve learning processes that utilize learning algorithms and requires training data. For highway traffic, the Greenshields model offers a practical relationship among vehicle speeds, traffic flows, and traffic density, which can serve as fundamental knowledge for developing intelligent traffic management systems. This paper proposes a fuzzy logic system based on the Greenshields model as the knowledge base for quickly predicting highway traffic congestion without extensive preparing data. Our system operates in two modes: jam and non-jam modes. In each model, the two inputs of vehicle speed and traffic flow are processed respectively with specified membership functions for effective fuzzification. The set of rules and conditions guided by the Greenshields theory is governed by the inference mechanism, which makes decisions according to the input field. Subsequently, the defuzzification process converts the fuzzy sets obtained by the inference engine into a congestion level as the output. To validate the accuracy of our system, a polynomial regression model utilizing realistic data from roadside equipment on the Sun Yat-Sen Highway in Taiwan is established for comparison. Comparing the observed data points from the polynomial regression model with the outputs obtained from our system using the same inputs, both predicting outputs are found to be consistent, affirming the practical feasibility of the proposed system. Moreover, our proposed scheme is adaptable to suit diverse road conditions without extensive training data and possesses a short memory to perform
Brain tumor is the most serious and deadly disease, and it is formed due to abnormal cell production. There are two different sorts of tumors including benign (non-cancerous) and malignant (cancerous), and the third l...
详细信息
暂无评论