In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...
详细信息
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data *** consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)*** user centric deployment of mmWave SBSs inevitably incurs correlation between UE and *** a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave *** using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power *** UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy *** also provide Monte Carlo simulation results to validate the accuracy of the derived ***,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave *** results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.
Mobile technology is developing *** phone technologies have been integrated into the healthcare industry to help medical ***,computer vision models focus on image detection and classification ***2 is a computer vision...
详细信息
Mobile technology is developing *** phone technologies have been integrated into the healthcare industry to help medical ***,computer vision models focus on image detection and classification ***2 is a computer vision model that performs well on mobile devices,but it requires cloud services to process biometric image information and provide predictions to *** leads to increased *** biometrics image datasets on mobile devices will make the prediction faster,but mobiles are resource-restricted devices in terms of storage,power,and computational ***,a model that is small in size,efficient,and has good prediction quality for biometrics image classification problems is *** pre-trained CNN(PCNN)MobileNetV2 architecture combined with a Support Vector Machine(SVM)compacts the model representation and reduces the computational cost and memory *** proposed novel approach combines quantized pre-trained CNN(PCNN)MobileNetV2 architecture with a Support Vector Machine(SVM)to represent models efficiently with low computational cost and *** contributions include evaluating three CNN models for ocular disease identification in transfer learning and deep feature plus SVM approaches,showing the superiority of deep features from MobileNetV2 and SVM classification models,comparing traditional methods,exploring six ocular diseases and normal classification with 20,111 images postdata augmentation,and reducing the number of trainable *** model is trained on ocular disorder retinal fundus image datasets according to the severity of six age-related macular degeneration(AMD),one of the most common eye illnesses,Cataract,Diabetes,Glaucoma,Hypertension,andMyopia with one class *** the experiment outcomes,it is observed that the suggested MobileNetV2-SVM model size is *** testing accuracy for MobileNetV2-SVM,InceptionV3,and MobileNetV2 is 90.11%,86.88%,a
The integration of machine learning (ML) into mobile applications presents unique challenges, particularly in resource-constrained environments such as iOS devices. Skin lesion classification is a critical task in der...
详细信息
Human emotions are the mind's responses to external stimuli, and due to their dynamic and unpredictable nature, research in this field has become increasingly important. There is a growing trend in utilizing deep ...
详细信息
Skin cancer poses a significant burden on mankind and healthcare systems globally, necessitating the development of effective diagnostic and treatment strategies. This paper introduces FusionEXNet, an innovative and i...
详细信息
Sensors are considered as important elements of electronic *** many applications and service,Wireless Sensor Networks(WSNs)are involved in significant data sharing that are delivered to the sink node in energy efficie...
详细信息
Sensors are considered as important elements of electronic *** many applications and service,Wireless Sensor Networks(WSNs)are involved in significant data sharing that are delivered to the sink node in energy efficient man-ner using multi-hop ***,the major challenge in WSN is the nodes are having limited battery resources,it is important to monitor the consumption rate of energy is very much ***,reducing energy con-sumption can increase the network lifetime in effective *** that,clustering methods are widely used for optimizing the rate of energy consumption among the sensor *** that concern,this paper involves in deriving a novel model called Improved Load-Balanced Clustering for Energy-Aware Routing(ILBC-EAR),which mainly concentrates on optimal energy utilization with load-balanced process among cluster heads and member *** providing equal rate of energy consumption among nodes,the dimensions of framed clusters are ***,the model develops a Finest Routing Scheme based on Load-Balanced Clustering to transmit the sensed information to the sink or base *** evaluation results depict that the derived energy aware model attains higher rate of life time than other works and also achieves balanced energy rate among head ***,the model also provides higher throughput and minimal delay in delivering data packets.
Currently, the 4G network service has caused massive digital growth in high use. Video calling has become the go-to Internet application for many people, downloading even huge files in minutes. Everyone is looking for...
详细信息
Currently, the 4G network service has caused massive digital growth in high use. Video calling has become the go-to Internet application for many people, downloading even huge files in minutes. Everyone is looking for and buying only 4G Subscriber Identity Module (SIM)-capable mobiles. In this case, the expectation of 5G has increased in line with 2G, 3G, and 4G, where the G stands for generation, and it does not indicate Internet or Internet speed. 5G includes next-generation features that are more advanced than those available in 4G network services. The main objective of 5G is uninterrupted telecommunication service in hybrid energy storage system. This paper proposes an intelligent networking model to obtain the maximum energy efficiency and Artificial Intelligence (AI) automation of 5G networks. There is currently an issue where the signal cuts out when crossing an area with one tower and traveling to an area with another tower. The problem of “call drop”, where the call is disconnected while talking, is not present in 5G. The proposed Intelligent Computational Model (ICM) model obtained 96.31% network speed management, 90.63% battery capacity management, 92.27% network device management, 93.57% energy efficiency, and 88.41% AI automation.
The performance for communication in a real-time mobile communication system is contingent upon the distribution of spectrum among the devices and the best antenna selection, which is determined by the Direction of Ar...
详细信息
Lung cancer is considered one of the most dangerous cancers, with a 5-year survival rate, ranking the disease among the top three deadliest cancers globally. Effectively combating lung cancer requires early detection ...
详细信息
Lung cancer is considered one of the most dangerous cancers, with a 5-year survival rate, ranking the disease among the top three deadliest cancers globally. Effectively combating lung cancer requires early detection for timely targeted interventions. However, ensuring early detection poses a major challenge, giving rise to innovative approaches. The emergence of artificial intelligence offers revolutionary solutions for predicting cancer. While marking a significant healthcare shift, the imperative to enhance artificial intelligence models remains a focus, particularly in precision medicine. This study introduces a hybrid deep learning model, incorporating Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory Networks (BiLSTM), designed for lung cancer detection from patients' medical notes. Comparative analysis with the MIMIC IV dataset reveals the model's superiority, achieving an MCC of 96.2% with an Accuracy of 98.1%, and outperforming LSTM and BioBERT with an MCC of 93.5 %, an accuracy of 97.0% and MCC of 95.5 with an accuracy of 98.0% respectively. Another comprehensive comparison was conducted with state-of-the-art results using the Yelp Review Polarity dataset. Remarkably, our model significantly outperforms the compared models, showcasing its superior performance and potential impact in the field. This research signifies a significant stride toward precise and early lung cancer detection, emphasizing the ongoing necessity for Artificial Intelligence model refinement in precision medicine. Authors
Recognition of deceptive intentions from the eyes has been of appealing interest in the last decades but is still unresolved. Here, we report the development of a paradigm based on the Concealed Information Test enabl...
详细信息
暂无评论