咨询与建议

限定检索结果

文献类型

  • 47 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 54 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 36 篇 工学
    • 21 篇 计算机科学与技术...
    • 17 篇 软件工程
    • 7 篇 材料科学与工程(可...
    • 4 篇 电气工程
    • 3 篇 光学工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 信息与通信工程
    • 3 篇 生物医学工程(可授...
    • 3 篇 生物工程
    • 2 篇 机械工程
    • 2 篇 动力工程及工程热...
    • 2 篇 控制科学与工程
  • 34 篇 理学
    • 20 篇 数学
    • 12 篇 物理学
    • 7 篇 统计学(可授理学、...
    • 5 篇 地球物理学
    • 5 篇 生物学
    • 5 篇 系统科学
    • 3 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
  • 8 篇 医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 临床医学
    • 3 篇 公共卫生与预防医...
    • 2 篇 药学(可授医学、理...
  • 7 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 图书情报与档案管...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 3 篇 molecular dynami...
  • 2 篇 merging
  • 2 篇 time series
  • 2 篇 finite element m...
  • 1 篇 knowledge based ...
  • 1 篇 velocity distrib...
  • 1 篇 developmental br...
  • 1 篇 riemannian geome...
  • 1 篇 modif
  • 1 篇 malnutrition
  • 1 篇 object oriented ...
  • 1 篇 big data
  • 1 篇 supernovae
  • 1 篇 security of data
  • 1 篇 knowledge manage...
  • 1 篇 optimal control ...
  • 1 篇 management infor...
  • 1 篇 human behaviour
  • 1 篇 dpa
  • 1 篇 information mana...

机构

  • 5 篇 center for theor...
  • 4 篇 institute of soc...
  • 4 篇 institute of env...
  • 4 篇 department of st...
  • 4 篇 school of public...
  • 4 篇 computational ph...
  • 4 篇 department of hy...
  • 3 篇 oeschger center ...
  • 3 篇 swiss tropical a...
  • 3 篇 computational ph...
  • 3 篇 university of ba...
  • 3 篇 department of ep...
  • 3 篇 santé publique f...
  • 3 篇 department of en...
  • 3 篇 school of tropic...
  • 3 篇 center for globa...
  • 3 篇 department of pu...
  • 3 篇 department of en...
  • 3 篇 faculty of envir...
  • 3 篇 air health scien...

作者

  • 4 篇 telcs andrás
  • 3 篇 armstrong ben
  • 3 篇 stippinger marce...
  • 3 篇 fabó dániel
  • 3 篇 madureira joana
  • 3 篇 guo yuming
  • 3 篇 orru hans
  • 3 篇 lavigne eric
  • 3 篇 pfeifer nico
  • 3 篇 sera francesco
  • 3 篇 benner peter
  • 3 篇 gasparrini anton...
  • 3 篇 somogyvári zoltá...
  • 3 篇 pascal mathilde
  • 3 篇 tobias aurelio
  • 3 篇 tong shilu
  • 3 篇 lim hyun
  • 2 篇 oussama ghajjou
  • 2 篇 mika koverola
  • 2 篇 agustin ibanez

语言

  • 48 篇 英文
  • 6 篇 其他
检索条件"机构=Department of Computer Science and Computational Methods"
54 条 记 录,以下是11-20 订阅
排序:
Predictive Scale-Bridging Simulations through Active Learning
arXiv
收藏 引用
arXiv 2022年
作者: Karra, Satish Mehana, Mohamed Lubbers, Nicholas Chen, Yu Diaw, Abdourahmane Santos, Javier E. Pachalieva, Aleksandra Pavel, Robert S. Haack, Jeffrey R. McKerns, Michael Junghans, Christoph Kang, Qinjun Livescu, Daniel Germann, Timothy C. Viswanathan, Hari S. Computational Earth Science Group Earth and Environmental Sciences Division Los Alamos National Laboratory NM87545 United States Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory RichlandWA99354 United States Information Sciences Group Computer Computational and Statistical Sciences Division Los Alamos National Laboratory Los AlamosNM87545 United States Department of Mechanics and Aerospace Engineering Southern University of Science and Technology Shenzen518055 China RadiaSoft LLC 6525 Gunpark Dr. Suite 370-411 BoulderCO80301 United States Applied Computer Science Group Computer Computational and Statistical Sciences Division Los Alamos National Laboratory Los AlamosNM87545 United States Computational Physics and Methods Los Alamos National Laboratory Los AlamosNM87545 United States Physics and Chemistry of Materials Group Theoretical Division Los Alamos National Laboratory Los AlamosNM87545 United States
Throughout computational science, there is a growing need to utilize the continual improvements in raw computational horsepower to achieve greater physical fidelity through scale-bridging over brute-force increases in... 详细信息
来源: 评论
AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-DIMENSIONAL ELLIPTIC EQUATIONS WITH LINE DIRAC SOURCES
arXiv
收藏 引用
arXiv 2021年
作者: Cao, Huihui Li, Hengguang Yi, Nianyu Yin, Peimeng Hunan Key Laboratory for Computation and Simulation in Science and Engineering School of Mathematics and Computational Science Xiangtan University Hunan Xiangtan411105 China Wayne State University Department of Mathematics DetroitMI48202 United States Multiscale Methods and Dynamics Group Computer Science and Mathematics Division Oak Ridge National Laboratory Oak RidgeTN37831 United States
In this paper, we propose a novel adaptive finite element method for an elliptic equation with line Dirac delta functions as a source term. We first study the well-posedness and global regularity of the solution in th... 详细信息
来源: 评论
Quantum Inspired Optimization for Industrial Scale Problems
arXiv
收藏 引用
arXiv 2023年
作者: Banner, William P. Hadiashar, Shima Bab Mazur, Grzegorz Menke, Tim Ziolkowski, Marcin Kennedy, Ken Romero, Jhonathan Cao, Yudong Grover, Jeffrey A. Oliver, William D. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA02139 United States Zapata Computing Inc. 100 Federal St 20th Floor BostonMA02110 United States Department of Computational Methods in Chemistry Jagiellonian University Gronostajowa 2 Kraków30-387 Poland Research Laboratory of Electronics Massachusetts Institute of Technology CambridgeMA02139 United States Department of Physics Massachusetts Institute of Technology CambridgeMA02139 United States Department of Physics Harvard University CambridgeMA02138 United States BMW Group Information Technology Research Center 2 Research Dr. GreenvilleSC29607 United States
Model-based optimization, in concert with conventional black-box methods, can quickly solve large-scale combinatorial problems. Recently, quantum-inspired modeling schemes based on tensor networks have been developed ...
来源: 评论
Particle In Cell Simulations of Mildly Relativistic Outflows in Kilonova Emissions
arXiv
收藏 引用
arXiv 2023年
作者: Rassel, Mohira Kilian, Patrick Aberham, Vito Spanier, Felix Lloyd-Ronning, Nicole Fryer, Chris L. Center for Theoretical Astrophysics Los Alamos National Laboratory Los AlamosNM87545 United States Center for Non Linear Studies Los Alamos National Laboratory Los AlamosNM87545 United States Space Science Institute 4765 Walnut St Suite B BoulderCO80301 United States Institut für Theoretische Astrophysik Universität Heidelberg Heidelberg69120 Germany Computational Physics and Methods Group Los Alamos National Laboratory Los AlamosNM87545 United States Department of Math Engineering & Science University of New Mexico Los AlamosNM87545 United States Computer Computational and Statistical Sciences Division Los Alamos National Laboratory Los AlamosNM87545 United States The University of Arizona TucsonAZ85721 United States Department of Physics and Astronomy The University of New Mexico AlbuquerqueNM87131 United States The George Washington University WashingtonDC20052 United States
The electromagnetic emission from neutron star mergers is comprised of multiple components. Synchrotron emission from the disk-powered jet as well as thermal emission from the merger ejecta (powered by a variety of so... 详细信息
来源: 评论
Parallel algorithms for tensor train arithmetic
arXiv
收藏 引用
arXiv 2020年
作者: Al Daas, Hussam Ballard, Grey Benner, Peter Department of Computational Methods in Systems and Control Theory Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany Computer Science Department Wake Forest University Winston SalemNC United States
We present efficient and scalable parallel algorithms for performing mathematical operations for low-rank tensors represented in the tensor train (TT) format. We consider algorithms for addition, elementwise multiplic... 详细信息
来源: 评论
ESCAPED: Efficient secure and private dot product framework for kernel-based machine learning algorithms with applications in healthcare
arXiv
收藏 引用
arXiv 2020年
作者: Ünal, Ali Burak Akgün, Mete Pfeifer, Nico Methods in Medical Informatics Department of Computer Science University of Tuebingen Germany Translational Bioinformatics University Hospital Tuebingen Tuebingen Germany Statistical Learning in Computational Biology Max Planck Institute for Informatics Saarbrücken Germany
To train sophisticated machine learning models one usually needs many training samples. Especially in healthcare settings these samples can be very expensive, meaning that one institution alone usually does not have e... 详细信息
来源: 评论
Realistic Kilonova Up Close
arXiv
收藏 引用
arXiv 2022年
作者: Stewart, Alexandra Ruth Lo, Li-Ta Korobkin, Oleg Sagert, Irina Loiseau, Julien Lim, Hyun Kaltenborn, Mark Alexander Mauney, Christopher Michael Miller, Jonah Maxwell CCS-2 Computational Physics and Methods Los Alamos National Laboratories Los AlamosNM87545 United States CCS-3 Information Sciences Los Alamos National Laboratories Los AlamosNM87545 United States CCS-7 Applied Computer Science Los Alamos National Laboratories Los AlamosNM87545 United States HPC Environments Los Alamos National Laboratories Los AlamosNM87545 United States Department of Physics Massachusetts Institute of Technology CambridgeMA02139 United States Department of Physics The George Washington University WashingtonDC20052 United States
Neutron star mergers are cosmic catastrophes that produce some of the most energetic observed phenomena: short gamma-ray bursts, gravitational wave signals, and kilonovae. The latter are optical transients, powered by... 详细信息
来源: 评论
A New Constraint on the Nuclear Equation of State from Statistical Distributions of Compact Remnants of Supernovae
arXiv
收藏 引用
arXiv 2021年
作者: Meskhi, Mikhail M. Wolfe, Noah E. Dai, Zhenyu Fröhlich, Carla Miller, Jonah M. Wong, Raymond K.W. Vilalta, Ricardo Department of Computer Science University of Houston HoustonTX77204-3010 United States Department of Physics North Carolina State University RaleighNC27695 United States CCS-2 Computational Physics and Methods Los Alamos National Laboratory Los AlamosNM87544 United States Center for Theoretical Astrophysics Los Alamos National Laandoratory Los AlamosNM87544 United States Department of Statistics Texas A&M University College StationTX77843 United States
Understanding how matter behaves at the highest densities and temperatures is a major open problem in both nuclear physics and relativistic astrophysics. Our understanding of such behavior is often encapsulated in the... 详细信息
来源: 评论
DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials
arXiv
收藏 引用
arXiv 2025年
作者: Zeng, Jinzhe Zhang, Duo Peng, Anyang Zhang, Xiangyu He, Sensen Wang, Yan Liu, Xinzijian Bi, Hangrui Li, Yifan Cai, Chun Zhang, Chengqian Du, Yiming Zhu, Jia-Xin Mo, Pinghui Huang, Zhengtao Zeng, Qiyu Shi, Shaochen Qin, Xuejian Yu, Zhaoxi Luo, Chenxing Ding, Ye Liu, Yun-Pei Shi, Ruosong Wang, Zhenyu Bore, Sigbjørn Løland Chang, Junhan Deng, Zhe Ding, Zhaohan Han, Siyuan Jiang, Wanrun Ke, Guolin Liu, Zhaoqing Lu, Denghui Muraoka, Koki Oliaei, Hananeh Singh, Anurag Kumar Que, Haohui Xu, Weihong Xu, Zhangmancang Zhuang, Yong-Bin Dai, Jiayu Giese, Timothy J. Jia, Weile Xu, Ben York, Darrin M. Zhang, Linfeng Wang, Han School of Artificial Intelligence and Data Science Unversity of Science and Technology of China Hefei China AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing China Baidu Inc. Beijing China Department of Computer Science University of Toronto TorontoON Canada Department of Chemistry Princeton University PrincetonNJ08540 United States University of Chinese Academy of Sciences Beijing100871 China State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen361005 China College of Integrated Circuits Hunan University Changsha410082 China State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Center for Smart Materials and Device Integration School of Material Science and Engineering Wuhan University of Technology Wuhan430070 China College of Science National University of Defense Technology Changsha410073 China Hunan Key Laboratory of Extreme Matter and Applications National University of Defense Technology Changsha410073 China ByteDance Research Beijing100098 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing100049 China Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education College of Chemistry Beijing Normal University Beijing100875 China Department of Geosciences Princeton University PrincetonNJ08544 United States Department of Applied Physics and Applied Mathematics Columbia University New YorkNY10027 United States IKKEM Fujian Xiamen361005 China Graduate
In recent years, machine learning potentials (MLPs) have become indispensable tools in physics, chemistry, and materials science, driving the development of software packages for molecular dynamics (MD) simulations an... 详细信息
来源: 评论
A DG-IMEX method for two-moment neutrino transport: Nonlinear solvers for neutrino-matter coupling
arXiv
收藏 引用
arXiv 2021年
作者: Laiu, M. Paul Endeve, Eirik Chu, Ran Harris, J. Austin Messer, O.E. Bronson Multiscale Methods Group Computer Science and Mathematics Division Oak Ridge National Laboratory Oak RidgeTN37831 United States Department of Physics and Astronomy University of Tennessee Knoxville KnoxvilleTN37996 United States National Center for Computational Sciences Oak Ridge National Laboratory Oak RidgeTN37831 United States Physics Division Oak Ridge National Laboratory Oak RidgeTN37831 United States
Neutrino-matter interactions play an important role in core-collapse supernova (CCSN) explosions as they contribute to both lepton number and/or four-momentum exchange between neutrinos and matter, and thus act as the... 详细信息
来源: 评论