Multimedia data encompasses various modalities, including audio, visual, and text, necessitating the development of robust retrieval methods capable of harnessing these modalities to extract and retrieve semantic info...
详细信息
One of the pressing concerns for emerging nations is maintenance of roads, including identification and repair of pavement distress. Previous research has focused on pothole detection and lane identification, with the...
详细信息
Before a heart attack happens, treating cardiac patients effectively depends on precise heart disease prediction. A heart disease prediction system for the determination of whether the patient has a heart disease cond...
详细信息
Consumer-level omnidirectional video offers an economically viable means to create virtual reality (VR) assets, enabling users to explore and interact within a fully immersive visual environment. However, editing such...
详细信息
Breast cancer poses a significant global threat, highlighting the urgent need for early detection to reduce mortality rates. Researchers are working to minimize the occurrence of false positives and false negatives, t...
详细信息
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing de...
详细信息
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition.
Gender identification from videos is a challenging task with significant real-world applications, such as video content analysis and social behavior research. In this study, we propose a novel approach, the White Shar...
详细信息
Cancer remains the leading cause of death worldwide, significantly impacting individuals and healthcare systems alike. In recent decades, skin cancer has surged in prevalence compared to other major cancer types. Vari...
详细信息
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have be...
详细信息
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have been developed to tackle these ***,most conventional Intrusion Detection System(IDS)models struggle with unseen cyberattacks and complex high-dimensional *** fact,this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system,named INTRUMER,which offers balanced accuracy,reliability,and security in cloud settings bymultiplemodulesworking together within *** traffic captured from cloud devices is first passed to the TC&TM module in which the Falcon Optimization Algorithm optimizes the feature selection process,and Naie Bayes algorithm performs the classification of *** selected features are classified further and are forwarded to the Heterogeneous Attention Transformer(HAT)*** this module,the contextual interactions of the network traffic are taken into account to classify them as normal or malicious *** classified results are further analyzed by the Explainable Prevention Module(XPM)to ensure trustworthiness by providing interpretable *** the explanations fromthe classifier,emergency alarms are transmitted to nearby IDSmodules,servers,and underlying cloud devices for the enhancement of preventive *** experiments on benchmark IDS datasets CICIDS 2017,Honeypots,and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model in detecting network trafficwith high accuracy for different *** outperforms state-of-the-art approaches,obtaining better performance metrics:98.7%accuracy,97.5%precision,96.3%recall,and 97.8%*** results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments against sophisticated cyber threats.
Lung cancer is the most lethal form of cancer. This paper introduces a novel framework to discern and classify pulmonary disorders such as pneumonia, tuberculosis, and lung cancer by analyzing conventional X-ray and C...
详细信息
暂无评论