The vulnerable nature of satellite-based positioning systems under certain conditions such as urban canyons and indoors has given rise to the need for alternative positioning system. Cellular signal based positioning ...
详细信息
Diagnosis of thyroid disease is a most important cause in the field of medicinal research and it is a complex onset axiom. Secretion of Thyroid hormone plays a major role in the regulation of metabolism. Hence, it is ...
详细信息
Diagnosis of thyroid disease is a most important cause in the field of medicinal research and it is a complex onset axiom. Secretion of Thyroid hormone plays a major role in the regulation of metabolism. Hence, it is very significant to predict thyroid disease in the initial stage, which is helpful for preventing more serious health complications due to thyroid cancer. The diagnostic accuracy of machine leaning-based approaches is greater but these techniques require large amounts of data for the diagnosis process. In the conventional approaches, the time needed for the prediction process is also high. Feature engineering is less investigated in conventional models and hence error produced during the prediction process is high. Hence, in this research work, a machine learning-aided thyroid disease prediction technique is designed to provide higher prediction accuracy and reliability. Initially, the thyroid data is gathered from the standard benchmark resources. Next, the data transformation process is carried out to make the data usable for analysis and visualization. After, the features are extracted using Principal Component Analysis (PCA), "One-Dimensional Convolutional Neural Network Model (1DCNN). Moreover, the statistical features are also extracted for getting more relevant information from the data. The three sets of features such as PCA-based, 1DCNN-based and statistical are concatenated and fed to the "optimal weighted feature selection" process, where the optimal features and weights are tuned by an Improved Archimedes Optimization Algorithm (IAOA). Next, the selected optimally fused features are given to the Ensemble Learning (EL) for predicting the thyroid diseases, where the EL with be suggested by incorporating stacking classifier, XGboost, and Multivariate regression classifier. Ensembling of three different classifiers provides higher thyroid disease prediction accuracy and it makes the decision about normal and abnormal classes. Here, the same IAOA
Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data ar...
详细信息
Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data are a few of the difficulties. These difficulties incur high computing costs and have a considerable effect on the accuracy and efficiency of machine learning (ML) methods. A key idea used to increase classification accuracy and lower computational costs is feature selection (FS). Finding the ideal collection of features that can accurately determine class labels by removing unnecessary data is the fundamental goal of FS. However, finding an effective FS strategy is a difficult task that has given rise to a number of algorithms built using biological systems based soft computing approaches. In order to solve the difficulties faced during the FS process;this work provides a novel hybrid optimization approach that combines statistical and soft-computing intelligence. On the first dataset of diabetes disease, the suggested approach was initially tested. The approach was later tested on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset after yielding encouraging results on diabetes dataset. While finding the solution, typically, data cleaning happens at the pre-processing stage. Later on, in a series of trials, different FS methods were used separately and in hybridized fashion, such as fine-tuned statistical methods like lasso (L1 regularization) and chi-square, as well as binary Harmony search algorithm (HSA) which is based on soft computing algorithmic approach. The most efficient strategy was chosen based on the performance metric data. These FS methods pick informative features, which are then used as input for a variety of traditional ML classifiers. The chosen technique is shown along with the determined influential features and associated metric values. The success of the classifiers is then evaluated using performance metrics like accuracy, preci
Artificial Intelligence of Things (AIoT) is an emerging frontier based on the deep fusion of Internet of Things (IoT) and Artificial Intelligence (AI) technologies. The fundamental goal of AIoT is to establish a self-...
详细信息
Artificial Intelligence of Things (AIoT) is an emerging frontier based on the deep fusion of Internet of Things (IoT) and Artificial Intelligence (AI) technologies. The fundamental goal of AIoT is to establish a self-organizing, self-learning, self-adaptive, and continuous-evolving AIoT system by orchestrating intelligent connections among Humans, Machines, and IoT devices. Although advanced deep learning techniques enhance the efficient data processing and intelligent analysis of complex IoT data, they still suffer from notable challenges when deployed to practical AIoT applications, such as constrained resources, dynamic environments, and diverse task requirements. Knowledge transfer, a popular and promising area in machine learning, is an effective method to enhance learning performance by avoiding the exorbitant costs associated with data recollection and model retraining. Notably, although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances of various knowledge transfer techniques for AIoT field. This survey endeavors to introduce a new concept of knowledge transfer, referred to as Crowd Knowledge Transfer (CrowdTransfer), which aims to transfer prior knowledge learned from a crowd of agents to reduce the training cost and as well as improve the performance of the model in real-world complicated scenarios. Particularly, we present four transfer modes from the perspective of crowd intelligence, including derivation, sharing, evolution and fusion modes. Building upon conventional transfer learning methods, we further delve into advanced crowd knowledge transfer models from three perspectives for various AIoT applications: intra-agent knowledge transfer, centralized inter-agent knowledge transfer, and decentralized inter-agent knowledge transfer. Furthermore, we explore some applications of AIoT areas, such as human activity recognition, urban comp
Payment channels support off-chain transactions by enhancing transaction speed and reducing fees in the main blockchain. However, the costs and complexity of the network increase as we increase the size of the network...
详细信息
In the burgeoning landscape of e-commerce, the ability to accurately classify product texts is paramount for enhancing user experience and driving business success. Traditional approaches to text classification often ...
详细信息
Cloud computing is an emerging field in information technology, enabling users to access a shared pool of computing resources. Despite its potential, cloud technology presents various challenges, with one of the most ...
详细信息
Modernization and intense industrialization have led to a substantial improvement in people’s quality of life. However, the aspiration for achieving an improved quality of life results in environmental contamination....
详细信息
One of the finalists for the eSTREAM projects in 2005 was Salsa, created by Daniel J. Bernstein. Salsa is a widely recognised stream cipher that gained prominence after multiple cryptanalytic techniques were applied t...
详细信息
Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and ***,achieving a balance between the quality...
详细信息
Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and ***,achieving a balance between the quality and efficiency of high-performance 3D applications and virtual reality(VR)remains *** This study addresses this issue by revisiting and extending view interpolation for image-based rendering(IBR),which enables the exploration of spacious open environments in 3D and ***,we introduce multimorphing,a novel rendering method based on the spatial data structure of 2D image patches,called the image *** this approach,novel views can be rendered with up to six degrees of freedom using only a sparse set of *** rendering process does not require 3D reconstruction of the geometry or per-pixel depth information,and all relevant data for the output are extracted from the local morphing cells of the image *** detection of parallax image regions during preprocessing reduces rendering artifacts by extrapolating image patches from adjacent cells in *** addition,a GPU-based solution was presented to resolve exposure inconsistencies within a dataset,enabling seamless transitions of brightness when moving between areas with varying light *** Experiments on multiple real-world and synthetic scenes demonstrate that the presented method achieves high"VR-compatible"frame rates,even on mid-range and legacy hardware,*** achieving adequate visual quality even for sparse datasets,it outperforms other IBR and current neural rendering *** Using the correspondence-based decomposition of input images into morphing cells of 2D image patches,multidimensional image morphing provides high-performance novel view generation,supporting open 3D and VR ***,the handling of morphing artifacts in the parallax image regions remains a topic for future resea
暂无评论