Breast cancer poses a significant global threat, highlighting the urgent need for early detection to reduce mortality rates. Researchers are working to minimize the occurrence of false positives and false negatives, t...
详细信息
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing de...
详细信息
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition.
Partitional clustering techniques such as K-Means(KM),Fuzzy C-Means(FCM),and Rough K-Means(RKM)are very simple and effective techniques for image ***,because their initial cluster centers are randomly determined,it is...
详细信息
Partitional clustering techniques such as K-Means(KM),Fuzzy C-Means(FCM),and Rough K-Means(RKM)are very simple and effective techniques for image ***,because their initial cluster centers are randomly determined,it is often seen that certain clusters converge to local *** addition to that,pathology image segmentation is also problematic due to uneven lighting,stain,and camera settings during the microscopic image capturing ***,this study proposes an Improved Slime Mould Algorithm(ISMA)based on opposition based learning and differential evolution’s mutation strategy to perform illumination-free White Blood Cell(WBC)*** ISMA helps to overcome the local optima trapping problem of the partitional clustering techniques to some *** paper also performs a depth analysis by considering only color components of many well-known color spaces for clustering to find the effect of illumination over color pathology image *** and visual results encourage the utilization of illumination-free or color component-based clustering approaches for image ***-KM and“ab”color channels of CIELab color space provide best results with above-99%accuracy for only nucleus ***,for entire WBC segmentation,ISMA-KM and the“CbCr”color component of YCbCr color space provide the best results with an accuracy of above 99%.Furthermore,ISMA-KM and ISMA-RKM have the lowest and highest execution times,*** the other hand,ISMA provides competitive outcomes over CEC2019 benchmark test functions compared to recent well-established and efficient Nature-Inspired Optimization Algorithms(NIOAs).
In today’s evolving landscape of video surveillance, our study introduces SuspAct, an innovative ensemble model designed to detect suspicious activities in real time swiftly. Leveraging advanced Long-term Recurrent C...
详细信息
Recognition of human activity is an active research area. It uses the Internet of Things, Sensory methods, Machine Learning, and Deep Learning techniques to assist various application fields like home monitoring, robo...
详细信息
Today cardiovascular diseases have been posing a serious threat to human lives all over the world. Various automated decision-making systems have been proposed by the researchers to help cardiologists to diagnose hear...
详细信息
An image can convey a thousand words. This statement emphasizes the importance of illustrating ideas visually rather than writing them down. Although detailed image representation is typically instructive, there are s...
详细信息
Unstructured Numerical Image Dataset Separation (UNIDS) method employing an enhanced unsupervised clustering technique. The objective is to delineate an optimal number of distinct groups within the input grayscale (G-...
详细信息
Gender identification from videos is a challenging task with significant real-world applications, such as video content analysis and social behavior research. In this study, we propose a novel approach, the White Shar...
详细信息
暂无评论