咨询与建议

限定检索结果

文献类型

  • 331 篇 会议
  • 282 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 614 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 383 篇 工学
    • 192 篇 计算机科学与技术...
    • 162 篇 软件工程
    • 144 篇 控制科学与工程
    • 76 篇 电气工程
    • 64 篇 信息与通信工程
    • 54 篇 电子科学与技术(可...
    • 51 篇 机械工程
    • 36 篇 生物医学工程(可授...
    • 34 篇 生物工程
    • 26 篇 动力工程及工程热...
    • 21 篇 化学工程与技术
    • 20 篇 光学工程
    • 20 篇 仪器科学与技术
    • 17 篇 交通运输工程
    • 16 篇 土木工程
    • 11 篇 建筑学
    • 10 篇 船舶与海洋工程
  • 232 篇 理学
    • 111 篇 数学
    • 56 篇 系统科学
    • 46 篇 生物学
    • 40 篇 物理学
    • 38 篇 统计学(可授理学、...
    • 24 篇 化学
  • 99 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 33 篇 图书情报与档案管...
    • 20 篇 工商管理
  • 43 篇 医学
    • 34 篇 临床医学
    • 30 篇 基础医学(可授医学...
    • 21 篇 药学(可授医学、理...
    • 11 篇 公共卫生与预防医...
  • 8 篇 经济学
  • 8 篇 法学
  • 4 篇 农学
  • 1 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 23 篇 control systems
  • 14 篇 optimization
  • 13 篇 optimal control
  • 11 篇 neural networks
  • 11 篇 predictive model...
  • 11 篇 mathematical mod...
  • 10 篇 computational mo...
  • 10 篇 robot sensing sy...
  • 9 篇 mobile robots
  • 9 篇 trajectory
  • 9 篇 genetic algorith...
  • 9 篇 machine learning
  • 8 篇 robust control
  • 8 篇 intelligent robo...
  • 8 篇 equations
  • 8 篇 robot kinematics
  • 7 篇 computer science
  • 7 篇 model predictive...
  • 7 篇 semantic segment...
  • 7 篇 safety

机构

  • 17 篇 institute of con...
  • 13 篇 institute of sys...
  • 11 篇 department of au...
  • 11 篇 key laboratory o...
  • 10 篇 department of au...
  • 9 篇 department of au...
  • 7 篇 shanghai key lab...
  • 7 篇 school of contro...
  • 7 篇 department of co...
  • 6 篇 department of co...
  • 6 篇 department of sy...
  • 6 篇 department of co...
  • 6 篇 department of co...
  • 5 篇 department of co...
  • 5 篇 science and tech...
  • 5 篇 ieee
  • 5 篇 key laboratory o...
  • 5 篇 key laboratory o...
  • 5 篇 the state key la...
  • 5 篇 computer enginee...

作者

  • 18 篇 olaf stursberg
  • 11 篇 kang li
  • 10 篇 yin xiang
  • 10 篇 wang hesheng
  • 10 篇 stursberg olaf
  • 9 篇 liu zhe
  • 9 篇 yang yang
  • 9 篇 li kang
  • 8 篇 jingcheng wang
  • 8 篇 shi ling
  • 8 篇 ai bo
  • 7 篇 wang jingcheng
  • 7 篇 mostafa abotaleb
  • 7 篇 wang guangming
  • 7 篇 zamani majid
  • 6 篇 el-sayed m.el-ke...
  • 6 篇 abdelaziz a.abde...
  • 6 篇 haw-ching yang
  • 6 篇 jinn-tsong tsai
  • 6 篇 shaoyuan li

语言

  • 578 篇 英文
  • 24 篇 其他
  • 8 篇 中文
  • 2 篇 日文
  • 1 篇 德文
检索条件"机构=Department of Computer Science and Control System"
614 条 记 录,以下是321-330 订阅
排序:
Comparisons of Different Kernels in Kriging-Assisted Evolutionary Expensive Optimization
Comparisons of Different Kernels in Kriging-Assisted Evoluti...
收藏 引用
IEEE Symposium Series on Computational Intelligence
作者: Jie Tian Ying Tan Chaoli Sun Jianchao Zeng Haibo Yu Yaochu Jin College of Mechanical Engineering Shandong Womens University Jinan China Department of Computer Science and Technology Northeastern University Shenyang China College of Mechanical Engineering Taiyuan University of Science and Technology Taiyuan China Division of Industrial and System Engineering Taiyuan University of Science and Technology Taiyuan China School of Computer Science and Control Engineering North University of China Taiyuan China Department of Computer Science Taiyuan University of Science and Technology Taiyuan China
Surrogate-assisted evolutionary algorithms (SAEAs) have received increasing attention in recent years. Kriging is one of the most popular surrogate models due to its ability to provide approximation uncertainty as wel... 详细信息
来源: 评论
An Event-Triggered Approach to State Estimation for Neural Networks with Individual Triggering Thresholds
An Event-Triggered Approach to State Estimation for Neural N...
收藏 引用
第35届中国控制会议
作者: Licheng Wang Zidong Wang Lei Zou Guoliang Wei Shanghai Key Lab of Modern Optical System Department of Control Science and EngineeringUniversity of Shanghai for Science and Technology Department of Computer Science Brunel University LondonUxbridge Research Institute of Intelligent Control and Systems Harbin Institute of Technology
In this paper, the state estimation problem is investigated for a class of discrete-time stochastic neural networks with event-triggered transmission(ETT) mechanism. Different from the traditional periodic communicati... 详细信息
来源: 评论
Observability-driven Sensor Deployment in Smart Academic Environments: Demo Abstract  16
Observability-driven Sensor Deployment in Smart Academic Env...
收藏 引用
Proceedings of the 14th ACM Conference on Embedded Network Sensor systems CD-ROM
作者: A. Agarwal K. Jaiswal U. Gudhaka V. Munigala Krithi Ramamritham Gopinath Karmakar Department of Computer Science & Engineering Indian Institute of Technology Bombay Reactor Control System Design Section Bhabha Atomic Research Centre
Saving energy without causing discomfort and without demanding human intervention is the need of the day. It is important to develop sensor systems which not only satisfy user requirements, but also take energy consum...
来源: 评论
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
arXiv
收藏 引用
arXiv 2018年
作者: Bakas, Spyridon Reyes, Mauricio Jakab, Andras Bauer, Stefan Rempfler, Markus Crimi, Alessandro Shinohara, Russell Takeshi Berger, Christoph Ha, Sung Min Rozycki, Martin Prastawa, Marcel Alberts, Esther Lipkova, Jana Freymann, John Kirby, Justin Bilello, Michel Fathallah-Shaykh, Hassan M. Wiest, Roland Kirschke, Jan Wiestler, Benedikt Colen, Rivka Kotrotsou, Aikaterini Lamontagne, Pamela Marcus, Daniel Milchenko, Mikhail Nazeri, Arash Weber, Marc-Andr Mahajan, Abhishek Baid, Ujjwal Gerstner, Elizabeth Kwon, Dongjin Acharya, Gagan Agarwal, Manu Alam, Mahbubul Albiol, Alberto Albiol, Antonio Albiol, Francisco J. Alex, Varghese Allinson, Nigel Amorim, Pedro H.A. Amrutkar, Abhijit Anand, Ganesh Andermatt, Simon Arbel, Tal Arbelaez, Pablo Avery, Aaron Azmat, Muneeza Pranjal, B. Bai, Wenjia Banerjee, Subhashis Barth, Bill Batchelder, Thomas Batmanghelich, Kayhan Battistella, Enzo Beers, Andrew Belyaev, Mikhail Bendszus, Martin Benson, Eze Bernal, Jose Bharath, Halandur Nagaraja Biros, George Bisdas, Sotirios Brown, James Cabezas, Mariano Cao, Shilei Cardoso, Jorge M. Carver, Eric N. Casamitjana, Adri Castillo, Laura Silvana Cat, Marcel Cattin, Philippe Cérigues, Albert Chagas, Vinicius S. Chandra, Siddhartha Chang, Yi-Ju Chang, Shiyu Chang, Ken Chazalon, Joseph Chen, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Cheng, Kun Choudhury, Ahana Roy Chylla, Roger Clrigues, Albert Colleman, Steven Colmeiro, Ramiro German Rodriguez Combalia, Marc Costa, Anthony Cui, Xiaomeng Dai, Zhenzhen Dai, Lutao Daza, Laura Alexandra Deutsch, Eric Ding, Changxing Dong, Chao Dong, Shidu Dudzik, Wojciech Eaton-Rosen, Zach Egan, Gary Escudero, Guilherme Estienne, Tho Everson, Richard Fabrizio, Jonathan Fan, Yong Fang, Longwei Feng, Xue Ferrante, Enzo Fidon, Lucas Fischer, Martin French, Andrew P. Fridman, Naomi Fu, Huan Fuentes, David Gao, Yaozong Gates, Evan Gering, David Gholami, Amir Gierke, Willi Glocker, Ben Gong, Mingming Gonzlez-Vill, Sandra Grosges, T. Guan, Yuanfang Guo, Sheng Gupta, Sudeep Han, Woo-Sup Han, Il Song Harmuth, Ko Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland Center for MR-Research University Children's Hospital Zurich Zurich Switzerland Support Centre for Advanced Neuroimaging Inselspital Institute for Diagnostic and Interventional Neuroradiology Bern University Hospital Bern Switzerland University Hospital of Zurich Zurich Switzerland Center for Clinical Epidemiology and Biostatistics University of Pennsylvania Philadelphia United States Image-Based Biomedical Modeling Group Technical University of Munich Munich Germany Icahn School of Medicine Mount Sinai Health System New YorkNY United States Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research FrederickMD21701 United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD20814 United States Department of Neurology University of Alabama at Birmingham BirminghamAL United States Department of Diagnostic Radiology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Psychology Washington University St. LouisMO United States Neuroimaging Informatics and Analysis Center Washington University St. LouisMO United States Department of Radiology Washington University St. LouisMO United States Institute of Diagnostic and Interventional Radiology Pediatric Radiology and Neuroradiology University Medical Center Rostock Ernst-Heydemann-Str. 6 Rostock18057 Germany Tata Memorial Centre Homi Bhabha National Institute Mumbai India Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India NVIDIA Santa Clara
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrot... 详细信息
来源: 评论
Stellar masses from granulation and oscillations of 23 bright red giants observed by BRITE - Constellation
arXiv
收藏 引用
arXiv 2019年
作者: Kallinger, T. Beck, P.G. Hekker, S. Huber, D. Kuschnig, R. Rockenbauer, M. Winter, P.M. Weiss, W.W. Handler, G. Moffat, A.F.J. Pigulski, A. Popowicz, A. Wade, G.A. Zwintz, K. Institut für Astrophysik Universität Wien Türkenschanzstrasse 17 Vienna1180 Austria Instituto de Astrofísica de Canarias La Laguna TenerifeE-38200 Spain Departamento de Astrofísica Universidad de La Laguna La Laguna TenerifeE-38206 Spain Max Planck Institute for Solar System Research Justus-von-Liebig-Weg 3 Göttingen37077 Germany Stellar Astrophysics Centre Department of Physics and Astronomy Aarhus University Ny Munkegade 120 Aarhus C8000 Denmark Institute for Astronomy University of Hawai'i 2680 Woodlawn Drive HonoluluHI96822 United States Institut für Kommunnikationsnetze und Satellitenkommunikation Technical University Graz Inffeldgasse 12 Graz8010 Austria Institute for Machine Learning Johannes Kepler University Computer Science Building Altenberger Str. 69 Linz4040 Austria Nicolaus Copernicus Astronomical Center ul. Bartycka 18 Warsaw00-716 Poland Université de Montréal CP 6128 Succ. Centre-Ville MontréalQCH3C 3J7 Canada Instytut Astronomiczny Uniwersytet Wroclawski Kopernika 11 Wroclaw51-622 Poland Institute of Automatic Control Silesian University of Technology Akademicka 16 Gliwice44-100 Poland Department of Physics Royal Military College of Canada PO Box 17000 Station Forces KingstonONK7K 0C6 Canada Universität Innsbruck Institut für Astro- und Teilchenphysik Technikerstrasse 25 InnsbruckA-6020 Austria
Context. The study of stellar structure and evolution depends crucially on accurate stellar parameters. The photometry from space telescopes has provided superb data that allowed asteroseismic characterisation of thou... 详细信息
来源: 评论
$\mathcal{L}_{2}$-Gain Analysis for a Class of Hybrid systems With Applications to Reset and Event-Triggered control: A Lifting Approach
收藏 引用
IEEE Transactions on Automatic control 2016年 第10期61卷 2766-2781页
作者: W. P. M. H. Heemels G. E. Dullerud A. R. Teel Control System Technology Group Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands Mechanical Science and Engineering Department and Coordinated Science Laboratory University of Illinois Urbana IL USA Department of Electrical and Computer Engineering University of California Santa Barbara CA USA
In this paper we study the stability and L 2 -gain properties of a class of hybrid systems that exhibit linear flow dynamics, periodic time-triggered jumps and arbitrary nonlinear jump maps. This class of hybrid syste... 详细信息
来源: 评论
Visual tracking via an ensemble of random classifiers
Visual tracking via an ensemble of random classifiers
收藏 引用
IEEE International Conference on Real-time Computing and Robotics (RCAR)
作者: Yichun Shi Hesheng Wang Department of Computer Science Shanghai Jiao Tong University Shanghai China Department of Automation Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing Shanghai China
One largest problem for tracking-by-detection methods is the incomplete and noisy training set. Occlusion, illumination and many other problems could lead to this problem. Models that are not adaptive enough would fai... 详细信息
来源: 评论
Robust stability of spacecraft traffic control system using Lyapunov functions
Robust stability of spacecraft traffic control system using ...
收藏 引用
International Conference on control, Automation and systems ( ICCAS)
作者: Gulzhan Uskenbayeva Mamyrbek Beisenbi Dana Satybaldina Vasyl Martsenyuk Aigul Shaikhanova Department of System analysis and control L.N. Gumilyov Eurasian National University Astana Kazakhstan Department of Computer Science and Automatics University of Bielsko-Biala Bielsko-Biala Poland Department of Automatic Control Shakarim State University of Semey Semey Kazakhstan
The article presents a new approach to the construction control systems for objects with uncertain parameters in the form of one-parametric structurally stable maps from catastrophe theory. This method allows synthesi... 详细信息
来源: 评论
Design of distributed H∞-optimized controllers considering stochastic communication link failures
Design of distributed H∞-optimized controllers considering ...
收藏 引用
2015 American control Conference, ACC 2015
作者: Jilg, Martin Tonne, Jens Stursberg, Olaf Institute of Control and System Theory Department of Electrical Engineering and Computer Science University of Kassel Germany
This paper proposes an approach for the design of distributed state-feedback controllers for interconnected discrete-time LTI systems with uncertain communication links. These links may be subject to intermittent or p... 详细信息
来源: 评论
F-CNN: An FPGA-based framework for training Convolutional Neural Networks
F-CNN: An FPGA-based framework for training Convolutional Ne...
收藏 引用
International Conference on Application Specific systems (ASAP), Architectures and Processors
作者: Wenlai Zhao Haohuan Fu Wayne Luk Teng Yu Shaojun Wang Bo Feng Yuchun Ma Guangwen Yang Ministry of Education Key Laboratory for Earth System Modeling and Center for Earth System Science Tsinghua University China Tsinghua National Laboratory for Information Science and Technology China Department of Computing Imperial college London UK Department of Automatic Test and Control Harbin Institute of Technology China Department of Computer Science and Technology Tsinghua University China
This paper presents a novel reconfigurable framework for training Convolutional Neural Networks (CNNs). The proposed framework is based on reconfiguring a streaming datapath at runtime to cover the training cycle for ... 详细信息
来源: 评论