In an era dominated by information dissemination through various channels like newspapers,social media,radio,and television,the surge in content production,especially on social platforms,has amplified the challenge of...
详细信息
In an era dominated by information dissemination through various channels like newspapers,social media,radio,and television,the surge in content production,especially on social platforms,has amplified the challenge of distinguishing between truthful and deceptive *** news,a prevalent issue,particularly on social media,complicates the assessment of news *** pervasive spread of fake news not only misleads the public but also erodes trust in legitimate news sources,creating confusion and polarizing *** the volume of information grows,individuals increasingly struggle to discern credible content from false narratives,leading to widespread misinformation and potentially harmful *** numerous methodologies proposed for fake news detection,including knowledge-based,language-based,and machine-learning approaches,their efficacy often diminishes when confronted with high-dimensional datasets and data riddled with noise or *** study addresses this challenge by evaluating the synergistic benefits of combining feature extraction and feature selection techniques in fake news *** employ multiple feature extraction methods,including Count Vectorizer,Bag of Words,Global Vectors for Word Representation(GloVe),Word to Vector(Word2Vec),and Term Frequency-Inverse Document Frequency(TF-IDF),alongside feature selection techniques such as Information Gain,Chi-Square,Principal Component Analysis(PCA),and Document *** comprehensive approach enhances the model’s ability to identify and analyze relevant features,leading to more accurate and effective fake news *** findings highlight the importance of a multi-faceted approach,offering a significant improvement in model accuracy and ***,the study emphasizes the adaptability of the proposed ensemble model across diverse datasets,reinforcing its potential for broader application in real-world *** introduce a pioneering ensemble
Software-defined networks(SDNs) present a novel network architecture that is widely used in various datacenters. However, SDNs also suffer from many types of security threats, among which a distributed denial of servi...
详细信息
Software-defined networks(SDNs) present a novel network architecture that is widely used in various datacenters. However, SDNs also suffer from many types of security threats, among which a distributed denial of service(DDoS) attack, which aims to drain the resources of SDN switches and controllers,is one of the most common. Once the switch or controller is damaged, the network services can be *** defense schemes against DDoS attacks have been proposed from the perspective of attack detection;however, such defense schemes are known to suffer from a time consuming and unpromising accuracy, which could result in an unavailable network service before specific countermeasures are taken. To address this issue through a systematic investigation, we propose an elaborate resource-management mechanism against DDoS attacks in an SDN. Specifically, by considering the SDN topology, we leverage the M/M/c queuing model to measure the resistance of an SDN to DDoS attacks. Network administrators can therefore invest a reasonable number of resources into SDN switches and SDN controllers to defend against DDoS attacks while guaranteeing the quality of service(QoS). Comprehensive analyses and empirical data-based experiments demonstrate the effectiveness of the proposed approach.
India being an agricultural country, food quality tracking is a major challenge faced by common farmers across the country. This research presents an innovative integration of Convolutional Neural Networks (CNNs) to a...
详细信息
Hepatitis is an infection that affects the liver through contaminated foods or blood transfusions,and it has many types,from normal to *** is diagnosed through many blood tests and factors;Artificial Intelligence(AI)t...
详细信息
Hepatitis is an infection that affects the liver through contaminated foods or blood transfusions,and it has many types,from normal to *** is diagnosed through many blood tests and factors;Artificial Intelligence(AI)techniques have played an important role in early diagnosis and help physicians make *** study evaluated the performance of Machine Learning(ML)algorithms on the hepatitis data *** dataset contains missing values that have been processed and outliers *** dataset was counterbalanced by the Synthetic Minority Over-sampling Technique(SMOTE).The features of the data set were processed in two ways:first,the application of the Recursive Feature Elimination(RFE)algorithm to arrange the percentage of contribution of each feature to the diagnosis of hepatitis,then selection of important features using the t-distributed Stochastic Neighbor Embedding(t-SNE)and Principal Component Analysis(PCA)***,the SelectKBest function was applied to give scores for each attribute,followed by the t-SNE and PCA ***,the classification algorithms K-Nearest Neighbors(KNN),Support Vector Machine(SVM),Artificial Neural Network(ANN),Decision Tree(DT),and Random Forest(RF)were fed by the dataset after processing the features in different methods are RFE with t-SNE and PCA and SelectKBest with t-SNE and PCA).All algorithms yielded promising results for diagnosing hepatitis data *** RF with RFE and PCA methods achieved accuracy,Precision,Recall,and AUC of 97.18%,96.72%,97.29%,and 94.2%,respectively,during the training *** the testing phase,it reached accuracy,Precision,Recall,and AUC by 96.31%,95.23%,97.11%,and 92.67%,respectively.
In the times of advanced generative artificial intelligence, distinguishing truth from fallacy and deception has become a critical societal challenge. This research attempts to analyze the capabilities of large langua...
详细信息
With the evolvement of the Internet of things(IoT), mobile edge computing(MEC) has emerged as a promising computing paradigm to support IoT data analysis and processing. In MEC for IoT, the differentiated requirements...
详细信息
With the evolvement of the Internet of things(IoT), mobile edge computing(MEC) has emerged as a promising computing paradigm to support IoT data analysis and processing. In MEC for IoT, the differentiated requirements on quality of service(QoS) have been growing rapidly, making QoS a multi-dimensional concept including several attributes, such as performance, dependability, energy efficiency, and economic factors. To guarantee the QoS of IoT applications, theories and techniques of multi-dimensional QoS evaluation and optimization have become important theoretical foundations and supporting technologies for the research and application of MEC for IoT,which have attracted significant attention from both academia and industry. This paper aims to survey the existing studies on multi-dimensional QoS evaluation and optimization of MEC for IoT, and provide insights and guidance for future research in this field. This paper summarizes the multi-dimensional and multi-attribute QoS metrics in Io T scenarios, and then several QoS evaluation methods are presented. For QoS optimization, the main research problems in this field are summarized, and optimization models as well as their corresponding solutions are elaborated. We take notice of the booming of edge intelligence in artificial intelligence-empowered Io T scenarios, and illustrate the new research topics and the state-of-the-art approaches related to QoS evaluation and optimization. We discuss the challenges and future research directions.
The thyroid gland, a pivotal regulator of essential physiological functions, orchestrates the production and release of thyroid hormones, playing a vital role in metabolism, growth, development, and overall bodily fun...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
This paper examines the convergence of cloud computing, facts science, and facts engineering, providing a primer for college kids getting into those fields. The examine highlights the synergistic courting among those ...
详细信息
In agriculture, crop yield estimation is essential;producers, industrialists, and consumers all benefit from knowing the early yield. Manual mango counting typically involves the utilization of human labor. Experts vi...
详细信息
暂无评论