Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
The paper proposed a secured and efficient data aggregation mechanism leveraging the edge computing paradigm and homomorphic data encryption technique. The paper used a unique combination of Paillier cryptosystem and ...
详细信息
Automated analysis of breast cancer (BC) histopathology images is a challenging task due to the high resolution, multiple magnifications, color variations, the presence of image artifacts, and morphological variabilit...
详细信息
This multi-center randomized controlled trial explores the therapeutic benefits of Indian classical music, specifically “Raga Therapy,” for managing diabetes, thyroid disorders, and hypertension—prevalent global he...
详细信息
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized *** allows ML models t...
详细信息
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized *** allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third *** paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data *** virtue of FL,models can be learned from all such distributed data sources while preserving data *** aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software ***,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL *** ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications.
Fog computing is a promising technology that has been emerged to handle the growth of smart devices as well as the popularity of latency-sensitive and location-awareness Internet of Things(IoT)*** the emergence of IoT...
详细信息
Fog computing is a promising technology that has been emerged to handle the growth of smart devices as well as the popularity of latency-sensitive and location-awareness Internet of Things(IoT)*** the emergence of IoT-based services,the industry of internet-based devices has *** number of these devices has raised from millions to billions,and it is expected to increase further in the near ***,additional challenges will be added to the traditional centralized cloud-based architecture as it will not be able to handle that growth and to support all connected devices in real-time without affecting the user *** data aggregation models for Fog enabled IoT environ-ments possess high computational complexity and communication ***-fore,in order to resolve the issues and improve the lifetime of the network,this study develops an effective hierarchical data aggregation with chaotic barnacles mating optimizer(HDAG-CBMO)*** HDAG-CBMO technique derives afitness function from many relational matrices,like residual energy,average distance to neighbors,and centroid degree of target ***,a chaotic theory based population initialization technique is derived for the optimal initial position of ***,a learning based data offloading method has been developed for reducing the response time to IoT user requests.A wide range of simulation analyses demonstrated that the HDAG-CBMO technique has resulted in balanced energy utilization and prolonged lifetime of the Fog assisted IoT networks.
Most of the search-based software remodularization(SBSR)approaches designed to address the software remodularization problem(SRP)areutilizing only structural information-based coupling and cohesion quality ***,in prac...
详细信息
Most of the search-based software remodularization(SBSR)approaches designed to address the software remodularization problem(SRP)areutilizing only structural information-based coupling and cohesion quality ***,in practice apart from these quality criteria,there require other aspects of coupling and cohesion quality criteria such as lexical and changed-history in designing the modules of the software ***,consideration of limited aspects of software information in the SBSR may generate a sub-optimal modularization ***,such modularization can be good from the quality metrics perspective but may not be acceptable to the *** produce a remodularization solution acceptable from both quality metrics and developers’perspectives,this paper exploited more dimensions of software information to define the quality criteria as modularization ***,these objectives are simultaneously optimized using a tailored manyobjective artificial bee colony(MaABC)to produce a remodularization *** assess the effectiveness of the proposed approach,we applied it over five software *** obtained remodularization solutions are evaluated with the software quality metrics and developers view of *** demonstrate that the proposed software remodularization is an effective approach for generating good quality modularization solutions.
This article investigates the impact of Artificial Intelligence (AI) and ChatGPT in the business sector. It highlights the evolution of AI, focusing on the integration and applications of technologies like machine lea...
详细信息
Security and privacy are major concerns in this modern world. Medical documentation of patient data needs to be transmitted between hospitals for medical experts opinions on critical cases which may cause threats to t...
详细信息
Security and privacy are major concerns in this modern world. Medical documentation of patient data needs to be transmitted between hospitals for medical experts opinions on critical cases which may cause threats to the data. Nowadays most of the hospitals use electronic methods to store and transmit data with basic security measures, but these methods are still vulnerable. There is no perfect solution that solves the security problems in any industry, especially healthcare. So, to cope with the arising need to increase the security of the data from being manipulated the proposed method uses a hybrid image encryption technique to hide the data in an image so it becomes difficult to sense the presence of data in the image while transmission. It combines Least Significant Bit (LSB) Algorithm using Arithmetic Division Operation along with Canny edge detection to embed the patient data in medical images. The image is subsequently encrypted using keys of six different chaotic maps sequentially to increase the integrity and robustness of the system. Finally, an encrypted image is converted into DNA sequence using DNA encoding rule to improve reliability. The experimentation is done on the Chest XRay image, Knee Magnetic Resonance Imaging (MRI) image, Neck MRI image, Lungs Computed Tomography (CT) Scan image datasets and patient medical data with 500 characters, 1000 characters and 1500 characters. And, it is evaluated based on time coefficient of encryption and decryption, histogram, entropy, similarity score (Mean Square Error), quality score (peak signal-to-noise ratio), motion activity index (number of changing pixel rate), unified average changing intensity, image similarity score (structure similarity index measurement) between original and encrypted images. Also, the proposed technique is compared with other recent state of arts methods for 500 characters embedding and performed better than those techniques. The proposed method is more stable and embeds comparativel
Stress has a remarkable impact on various cognitive functions, demanding timely and effective detection using strategies deployed across interdisciplinary domains. It influences decision-making, attention, learning, a...
详细信息
Stress has a remarkable impact on various cognitive functions, demanding timely and effective detection using strategies deployed across interdisciplinary domains. It influences decision-making, attention, learning, and problem-solving abilities. As a result, stress detection and modeling have become important areas of study in both psychology and computerscience. This study links the fields of psychology and machine learning to deal with the urgent requirement of accurate stress detection methodologies and highlights sleep patterns as a key indicator for stress detection, discussing a novel approach to understand and determine stress levels. Psychologists use affective states to measure stress, which refers to a sense of feeling an underlying emotional state. However, most stress classification work has been limited to user-dependent models, which new users cannot use without additional training. This can be a significant time burden for new users trying to predict their affective states. Therefore, it is critical to address basic mental health issues in children and adults to prevent them from developing more complex problems on account of undergoing stress. The medical field processes vast amounts of medical data;the machine learning algorithms sift through patterns that might escape the human eye. The machine learning algorithms act as detectives, able to spot correlations and bring out a sense of complex information. The machine learning algorithms reveal fine correlations and patterns, aiding in more precise and prompt diagnoses particularly to focus fundamental mental health issues in individuals of all ages. This research work deploys an enhanced Multilayer Perceptron (MLP), exhibiting an extensive feature analysis for processing medical datasets, resulting in improved effectiveness in predicting stress levels. This helps us to diagnose issues more accurately and swiftly which improves the patient outcomes. The proposed and enhanced MLP model undergoes stri
暂无评论