Accurate significant wave height(SWH)prediction is essential for the development and utilization of wave *** learning methods such as recurrent and convolutional neural networks have achieved good results in SWH ***,t...
详细信息
Accurate significant wave height(SWH)prediction is essential for the development and utilization of wave *** learning methods such as recurrent and convolutional neural networks have achieved good results in SWH ***,these methods do not adapt well to dynamic seasonal variations in wave *** this study,we propose a novel method—the spatiotemporal dynamic graph(STDG)neural *** method predicts the SWH of multiple nodes based on dynamic graph modeling and multi-characteristic ***,considering the dynamic seasonal variations in the wave direction over time,the network models wave dynamic spatial dependencies from long-and short-term pattern ***,to correlate multiple characteristics with SWH,the network introduces a cross-characteristic transformer to effectively fuse multiple ***,we conducted experiments on two datasets from the South China Sea and East China Sea to validate the proposed method and compared it with five prediction methods in the three *** experimental results show that the proposed method achieves the best performance at all predictive scales and has greater advantages for extreme value ***,an analysis of the dynamic graph shows that the proposed method captures the seasonal variation mechanism of the waves.
Defects in multistage manufacturing processes (MMPs) decrease profitability and product quality. Therefore, MMP parameter optimization within a range is essential to prevent defects, achieve dynamic accuracy, and acco...
详细信息
Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple *** these achieve-ments,LLMs have inherent limitat...
详细信息
Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple *** these achieve-ments,LLMs have inherent limitations including outdated information,hallucinations,inefficiency,lack of interpretability,and challenges in domain-specific *** address these issues,this survey explores three promising directions in the post-LLM era:knowledge empowerment,model collaboration,and model ***,we examine methods of integrating external knowledge into LLMs to enhance factual accuracy,reasoning capabilities,and interpretability,including incorporating knowledge into training objectives,instruction tuning,retrieval-augmented inference,and knowledge ***,we discuss model collaboration strategies that leverage the complementary strengths of LLMs and smaller models to improve efficiency and domain-specific performance through techniques such as model merging,functional model collaboration,and knowledge ***,we delve into model co-evolution,in which multiple models collaboratively evolve by sharing knowledge,parameters,and learning strategies to adapt to dynamic environments and tasks,thereby enhancing their adaptability and continual *** illustrate how the integration of these techniques advances AI capabilities in science,engineering,and society—particularly in hypothesis development,problem formulation,problem-solving,and interpretability across various *** conclude by outlining future pathways for further advancement and applications.
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are v...
详细信息
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are vital in facilitating end-user communication ***,the security of Android systems has been challenged by the sensitive data involved,leading to vulnerabilities in mobile devices used in 5G *** vulnerabilities expose mobile devices to cyber-attacks,primarily resulting from security ***-permission apps in Android can exploit these channels to access sensitive information,including user identities,login credentials,and geolocation *** such attack leverages"zero-permission"sensors like accelerometers and gyroscopes,enabling attackers to gather information about the smartphone's *** underscores the importance of fortifying mobile devices against potential future *** research focuses on a new recurrent neural network prediction model,which has proved highly effective for detecting side-channel attacks in mobile devices in 5G *** conducted state-of-the-art comparative studies to validate our experimental *** results demonstrate that even a small amount of training data can accurately recognize 37.5%of previously unseen user-typed ***,our tap detection mechanism achieves a 92%accuracy rate,a crucial factor for text *** findings have significant practical implications,as they reinforce mobile device security in 5G networks,enhancing user privacy,and data protection.
In this paper, we delve into the investigation of locating broadcast 2-centers of a tree T under the postal model. The problem asks to deploy two broadcast centers so that the maximum communication time from the cente...
详细信息
Cloud Computing is a rapidly growing emerging technology in the IT environment. Internet-based computing provides services like sharing resources e.g. network, storage, applications and software through the Internet. ...
详细信息
Automated reading of license plate and its detection is a crucial component of the competent transportation system. Toll payment and parking management e-payment systems may benefit from this software’s features. Lic...
详细信息
ASR is an effectual approach, which converts human speech into computer actions or text format. It involves extracting and determining the noise feature, the audio model, and the language model. The extraction and det...
详细信息
This system provides a comprehensive overview of hospital environments by tracking air quality, dust, temperature, and humidity simultaneously, offering a more complete picture of indoor conditions than systems that f...
详细信息
The rapid development of the Internet has led to the widespread dissemination of manipulated facial images, significantly impacting people's daily lives. With the continuous advancement of Deepfake technology, the...
详细信息
The rapid development of the Internet has led to the widespread dissemination of manipulated facial images, significantly impacting people's daily lives. With the continuous advancement of Deepfake technology, the generated counterfeit facial images have become increasingly challenging to distinguish. There is an urgent need for a more robust and convincing detection method. Current detection methods mainly operate in the spatial domain and transform the spatial domain into other domains for analysis. With the emergence of transformers, some researchers have also combined traditional convolutional networks with transformers for detection. This paper explores the artifacts left by Deepfakes in various domains and, based on this exploration, proposes a detection method that utilizes the steganalysis rich model to extract high-frequency noise to complement spatial features. We have designed two main modules to fully leverage the interaction between these two aspects based on traditional convolutional neural networks. The first is the multi-scale mixed feature attention module, which introduces artifacts from high-frequency noise into spatial textures, thereby enhancing the model's learning of spatial texture features. The second is the multi-scale channel attention module, which reduces the impact of background noise by weighting the features. Our proposed method was experimentally evaluated on mainstream datasets, and a significant amount of experimental results demonstrate the effectiveness of our approach in detecting Deepfake forged faces, outperforming the majority of existing methods.
暂无评论