1 IntroductionText categorization methods based on machine learning always encounter the curse of dimensionality. Therefore, it is crucial to perform feature selection to reduce dimensionality of text vectors. Methods...
详细信息
1 IntroductionText categorization methods based on machine learning always encounter the curse of dimensionality. Therefore, it is crucial to perform feature selection to reduce dimensionality of text vectors. Methods based on the difference between document rate of a term in the positive class and that in the negative class have been widely studied in recent years, which is originated from balanced accuracy measures (ACC2) [1].
Heart monitoring improves life ***(ECGs or EKGs)detect heart *** learning algorithms can create a few ECG diagnosis processing *** first method uses raw ECG and time-series *** second method classifies the ECG by pati...
详细信息
Heart monitoring improves life ***(ECGs or EKGs)detect heart *** learning algorithms can create a few ECG diagnosis processing *** first method uses raw ECG and time-series *** second method classifies the ECG by patient *** third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer *** ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and *** using all three approaches have not been examined till *** researchers found that Machine Learning(ML)techniques can improve ECG *** study will compare popular machine learning techniques to evaluate ECG *** algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization *** plus prior knowledge has the highest accuracy(99%)of the four ML *** characteristics failed to identify signals without chaos *** 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments.
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized *** allows ML models t...
详细信息
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized *** allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third *** paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data *** virtue of FL,models can be learned from all such distributed data sources while preserving data *** aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software ***,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL *** ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications.
Optimizing therapy and rehabilitation for Parkinson's disease (PD) requires early identification and precise evaluation of the illness's course. However, there is disagreement about the best way to use gait an...
详细信息
Travelers usually check information about the destination before they decide to go. However, sometimes the information is too much to handle and causes confusion. A filtering mechanism is needed to help them make thei...
详细信息
The ability to learn incrementally is critical to the long-term operation of AI systems. Benefiting from the power of few-shot class-incremental learning(FSCIL), deep learning models can continuously recognize new cla...
详细信息
The ability to learn incrementally is critical to the long-term operation of AI systems. Benefiting from the power of few-shot class-incremental learning(FSCIL), deep learning models can continuously recognize new classes with only a few samples. The difficulty is that limited instances of new classes will lead to overfitting and exacerbate the catastrophic forgetting of the old classes. Most previous works alleviate the above problems by imposing strong constraints on the model structure or parameters, but ignoring embedding network transferability and classifier adaptation(CA), failing to guarantee the efficient utilization of visual features and establishing relationships between old and new classes. In this paper, we propose a simple and novel approach from two perspectives: embedding bias and classifier bias. The method learns an embedding augmented(EA) network with cross-class transfer and class-specific discriminative abilities based on self-supervised learning and modulated attention to alleviate embedding bias. Based on the adaptive incremental classifier learning scheme to realize incremental learning capability,guiding the adaptive update of prototypes and feature embeddings to alleviate classifier bias. We conduct extensive experiments on two popular natural image datasets and two medical datasets. The experiments show that our method is significantly better than the baseline and achieves state-of-the-art results.
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled ...
详细信息
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled smart *** high volume and high velocity of data generated by various smart city applications are sent to flexible and efficient cloud computing resources for ***,there is a high computation latency due to the presence of a remote cloud *** computing,which brings the computation close to the data source is introduced to overcome this *** an IoT-enabled smart city environment,one of the main concerns is to consume the least amount of energy while executing tasks that satisfy the delay *** efficient resource allocation at the edge is helpful to address this *** this paper,an energy and delay minimization problem in a smart city environment is formulated as a bi-objective edge resource allocation ***,we presented a three-layer network architecture for IoT-enabled smart ***,we designed a learning automata-based edge resource allocation approach considering the three-layer network architecture to solve the said bi-objective minimization *** Automata(LA)is a reinforcement-based adaptive decision-maker that helps to find the best task and edge resource *** extensive set of simulations is performed to demonstrate the applicability and effectiveness of the LA-based approach in the IoT-enabled smart city environment.
Edge learning (EL) is an end-to-edge collaborative learning paradigm enabling devices to participate in model training and data analysis, opening countless opportunities for edge intelligence. As a promising EL framew...
详细信息
In this work, a novel methodological approach to multi-attribute decision-making problems is developed and the notion of Heptapartitioned Neutrosophic Set Distance Measures (HNSDM) is introduced. By averaging the Pent...
详细信息
Bacteria are microscopic organisms that can be found in many environments. They are abundant and have many roles in our life. Studying bacteria is essential so that we can identify the bacteria that are needed for man...
详细信息
暂无评论