咨询与建议

限定检索结果

文献类型

  • 21,154 篇 期刊文献
  • 13,668 篇 会议
  • 230 册 图书

馆藏范围

  • 35,052 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 20,030 篇 工学
    • 14,065 篇 计算机科学与技术...
    • 11,272 篇 软件工程
    • 3,778 篇 信息与通信工程
    • 2,789 篇 生物工程
    • 2,787 篇 控制科学与工程
    • 2,173 篇 生物医学工程(可授...
    • 1,796 篇 电气工程
    • 1,467 篇 光学工程
    • 1,351 篇 电子科学与技术(可...
    • 1,045 篇 化学工程与技术
    • 913 篇 机械工程
    • 760 篇 动力工程及工程热...
    • 758 篇 安全科学与工程
    • 701 篇 仪器科学与技术
  • 17,201 篇 理学
    • 11,229 篇 数学
    • 5,051 篇 统计学(可授理学、...
    • 3,534 篇 物理学
    • 3,439 篇 生物学
    • 1,804 篇 系统科学
    • 1,325 篇 化学
    • 713 篇 地球物理学
  • 5,275 篇 管理学
    • 2,790 篇 管理科学与工程(可...
    • 2,569 篇 图书情报与档案管...
    • 1,596 篇 工商管理
  • 2,524 篇 医学
    • 2,068 篇 临床医学
    • 1,715 篇 基础医学(可授医学...
    • 1,011 篇 公共卫生与预防医...
    • 953 篇 药学(可授医学、理...
  • 1,110 篇 法学
    • 988 篇 社会学
  • 909 篇 经济学
    • 885 篇 应用经济学
  • 553 篇 农学
  • 401 篇 教育学
  • 112 篇 文学
  • 41 篇 哲学
  • 40 篇 军事学
  • 39 篇 艺术学
  • 18 篇 历史学

主题

  • 804 篇 machine learning
  • 763 篇 deep learning
  • 668 篇 accuracy
  • 564 篇 computer science
  • 407 篇 statistics
  • 359 篇 training
  • 347 篇 computational mo...
  • 340 篇 support vector m...
  • 329 篇 feature extracti...
  • 326 篇 predictive model...
  • 268 篇 reinforcement le...
  • 262 篇 internet of thin...
  • 255 篇 artificial intel...
  • 255 篇 convolutional ne...
  • 254 篇 data models
  • 238 篇 deep neural netw...
  • 235 篇 image segmentati...
  • 225 篇 forecasting
  • 209 篇 data mining
  • 204 篇 covid-19

机构

  • 429 篇 department of ph...
  • 397 篇 iccub universita...
  • 307 篇 university of ch...
  • 295 篇 nikhef national ...
  • 293 篇 imperial college...
  • 291 篇 center for high ...
  • 289 篇 school of physic...
  • 289 篇 institute of par...
  • 287 篇 department of ph...
  • 287 篇 physik-institut ...
  • 287 篇 physikalisches i...
  • 285 篇 cavendish labora...
  • 285 篇 stfc rutherford ...
  • 285 篇 school of physic...
  • 285 篇 oliver lodge lab...
  • 285 篇 school of physic...
  • 280 篇 henryk niewodnic...
  • 279 篇 van swinderen in...
  • 279 篇 departamento de ...
  • 277 篇 fakultät physik ...

作者

  • 239 篇 beiter a.
  • 233 篇 barter w.
  • 221 篇 bellee v.
  • 209 篇 bowcock t.j.v.
  • 207 篇 casse g.
  • 188 篇 brundu d.
  • 167 篇 blake t.
  • 153 篇 baker s.
  • 146 篇 borsato m.
  • 146 篇 boettcher t.
  • 146 篇 albrecht j.
  • 144 篇 betancourt c.
  • 144 篇 amato s.
  • 144 篇 cattaneo m.
  • 144 篇 amhis y.
  • 144 篇 akar s.
  • 142 篇 a. jawahery
  • 142 篇 m. gandelman
  • 142 篇 t. gershon
  • 142 篇 r. mountain

语言

  • 31,557 篇 英文
  • 3,376 篇 其他
  • 136 篇 中文
  • 10 篇 法文
  • 9 篇 德文
  • 6 篇 西班牙文
  • 5 篇 俄文
  • 4 篇 斯洛文尼亚文
  • 3 篇 意大利文
  • 1 篇 土耳其文
检索条件"机构=Department of Computer Science and Department of Statistics and Data Science"
35052 条 记 录,以下是4971-4980 订阅
排序:
Hybrid Scheduling and Authentication for Legacy Uniprocessor and Multicore System  12
Hybrid Scheduling and Authentication for Legacy Uniprocessor...
收藏 引用
12th International Conference on computer Communication and Informatics, ICCCI 2022
作者: Muneeswari, G. Selvaraj, Prabha Burugari, Vijay Kumar Kanmani, P. School of Computer Science and Engineering VIT-AP University Andhra Pradesh Amaravati India K L University Koneru Lakshmaiah Education Foundation Department of Computer Science and Engineering Vaddeeswaram Andhra Pradesh India Srm Institute of Science and Technology Department of Data Science and Business Systems Chengalpattu Kattankulathur India
In the era of advanced internet technology and parallel processing, the identification of the suitable system is more important than the inefficient computation with the non-compatible work stations. Eventually, it is... 详细信息
来源: 评论
An Isomerism Learning Model to Solve Time-Varying Problems Through Intelligent Collaboration
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第8期10卷 1772-1774页
作者: Zhihao Hao Guancheng Wang Bob Zhang Leyuan Fang Haisheng Li the Department of Computer and Information Science University of MacaoMacao 999078China the School of Data Science the Chinese University of Hong KongShenzhen 518172 Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen 518000 China Industrial Control Systems Cyber Emergency Response Team Beijing 100040China IEEE the College of Electrical and Information Engineering Hunan UniversityChangsha 410082 the Peng Cheng Laboratory Shenzhen 518000China the Beijing Key Laboratory of Big Data Technology for Food Safety Beijing Technology and Business UniversityBeijing 100048 the School of Computer Science and Engineering Beijing Technology and Business UniversityBeijing 100048China
Dear Editor,This letter deals with a solution for time-varying problems using an intelligent computational(IC)algorithm driven by a novel decentralized machine learning approach called isomerism *** order to meet the ... 详细信息
来源: 评论
Uncertainty estimation with recursive feature machines  24
Uncertainty estimation with recursive feature machines
收藏 引用
Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence
作者: Daniel Gedon Amirhesam Abedsoltan Thomas B. Schön Mikhail Belkin Department of Information Technology Uppsala University Sweden Department of Computer Science and Engineering UC San Diego Department of Computer Science and Engineering UC San Diego and Halıcıoğlu Data Science Institute UC San Diego
In conventional regression analysis, predictions are typically represented as point estimates derived from covariates. The Gaussian Process (GP) offer a kernel-based framework that predicts and quantifies associated u...
来源: 评论
ADDRESSING THE NULL PARADOX IN EPIDEMIC MODELS: CORRECTING FOR COLLIDER BIAS IN CAUSAL INFERENCE
arXiv
收藏 引用
arXiv 2024年
作者: Bong, Heejong Ventura, Valérie Wasserman, Larry Department of Statistics University of Michigan Ann ArborMI48109 United States Department of Statistics & Data Science Carnegie Mellon University PittsburghPA15213 United States
We address the null paradox in epidemic models, where standard methods estimate a non-zero treatment effect despite the true effect being zero. This occurs when epidemic models mis-specify how causal effects propagate... 详细信息
来源: 评论
AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
arXiv
收藏 引用
arXiv 2025年
作者: Benechehab, Abdelhakim Feofanov, Vasilii Paolo, Giuseppe Thomas, Albert Filippone, Maurizio Kégl, Balázs Huawei Noah’s Ark Lab Paris France Department of Data Science EURECOM Statistics Program KAUST Saudi Arabia
Pre-trained foundation models (FMs) have shown exceptional performance in univariate time series forecasting tasks. However, several practical challenges persist, including managing intricate dependencies among featur... 详细信息
来源: 评论
Optimization techniques for preserving privacy in data mining  5
Optimization techniques for preserving privacy in data minin...
收藏 引用
5th IEEE International Conference on Electrical, computer and Communication Technologies, ICECCT 2023
作者: Devi, K.Renuka Balasamy, K. Prathyusha, M. Jeevitha, R. Balasubramanie, P. Eswaran, Malathi Dr. Mahalingam College of Engineering and Technology Department of Information Technology Pollachi India Bannari Amman Institute of Technology Department of Artificial Intelligence and Data Science Sathyamangalam India MVSR Engineering College Department of IT Hyderabad India KPR Institute of Engineering and Technology Department of CSE Coimbatore India Kongu Engineering College Department of Computer Science and Engineering Erode Perundurai India
data mining is one of the significant area where it plays a predominant role in extracting important factors and trends from large volume of data. This covers various areas such as healthcare, education, entertainment... 详细信息
来源: 评论
Causal health impacts of power plant emission controls under modeled and uncertain physical process interference
arXiv
收藏 引用
arXiv 2023年
作者: Wikle, Nathan B. Zigler, Corwin M. Department of Statistics and Actuarial Science University of Iowa United States Department of Statistics and Data Sciences University of Texas Austin United States
Causal inference with spatial environmental data is often challenging due to the presence of interference: outcomes for observational units depend on some combination of local and non-local treatment. This is especial... 详细信息
来源: 评论
Abnormal Load Patterns Detection in Smart Grids Using Temporal Convolutional Neural Network Based Gated Recurrent Units Networks with Multi-Head Temporal Attention  4
Abnormal Load Patterns Detection in Smart Grids Using Tempor...
收藏 引用
4th IEEE International Conference on Mobile Networks and Wireless Communications, ICMNWC 2024
作者: Balassem, Zayd Srikanteswara, Ramya Esakki Madura, E. Anjaneyulu, Madugula Devi, M. College of Technical Engineering The Islamic University Department of Computers Techniques Engineering Najaf Iraq Nitte Meenakshi Institute of Technology Department of Computer Science and Engineering Bengaluru India Bannari Amman Institute of Technology Department of Artificial Intelligence and Data Science India Gokaraju Rangaraju Institute of Engineering and Technology Department of Artificial Intelligence and Machine Learning Hyderabad India New Prince Shri Bhavani College of Engineering and Technology Department of Electrical and Electronics Engineering Chennai India
In recent era, the advancement in smart grid technologies and the integration of renewable energy sources have modernized the power distribution landscape. The efficiency and stability of overall system is ensured by ... 详细信息
来源: 评论
Redundancy-Free Self-Supervised Relational Learning for Graph Clustering
arXiv
收藏 引用
arXiv 2023年
作者: Yi, Si-Yu Ju, Wei Qin, Yifang Luo, Xiao Liu, Luchen Zhou, Yong-Dao Zhang, Ming School of Statistics and Data Science Nankai University Tianjin300071 China School of Computer Science Peking University Beijing100871 China Department of Computer Science University of California Los Angeles90095 United States
Graph clustering, which learns the node representations for effective cluster assignments, is a fundamental yet challenging task in data analysis and has received considerable attention accompanied by graph neural net... 详细信息
来源: 评论
Advances in Clustering Algorithms for Large-Scale data Processing with AI  3
Advances in Clustering Algorithms for Large-Scale Data Proce...
收藏 引用
3rd International Conference on Smart Generation Computing, Communication and Networking, SMART GENCON 2023
作者: Sharma, Sonal Singh, Vandana Jeyalaxmi, M. Chaudhari, Prasad B. Das, Neeraj Garg, Avni Computer Science and Engineering Karnataka Bangalore India Vivekananda Global University Department of Computer Science & Engineering Jaipur India Prince Shri Venkateshwara Padmavathy Engineering College Department of Science and Humanities Chennai127 India Vishwakarma Institute of Information Technology Department of Artificial Intelligence & Data Science Pune India Maharishi School of Engineering and Technology Maharishi University of Information Technology Uttar Pradesh India Centre of Interdisciplinary Research in Business and Technology Chitkara University Institute of Engineering and Technology Chitkara University Punjab India
Clustering is a widely used technique in statistics mining for exploring and reading records with AI. It is an unsupervised gaining knowledge of technique, which may be used for exploratory facts evaluation. Clusterin... 详细信息
来源: 评论