The progress in technology has provided opportunities for innovative solutions to intricate challenges. One possible method is employing reinforcement learning to model flying trajectories in intricate environments. G...
详细信息
ISBN:
(纸本)9798331530938
The progress in technology has provided opportunities for innovative solutions to intricate challenges. One possible method is employing reinforcement learning to model flying trajectories in intricate environments. Game development is a discipline that involves intricate reasoning and dynamic interplay between the user and the game environment. By employing several gaming engines, developers are now able to replicate real-life situations through the implementation of diverse machine learning methods. Aircraft simulation in game creation using reinforcement learning involves creating a visual depiction of real-life settings where aircraft may navigate complex environments without direct input from a human user. Currently, reinforcement learning is not widely applied in game development, particularly in simulation-based path finding techniques. This algorithm approaches possess the efficacy and capacity to generate sophisticated neural networks capable of directing an agent to do certain tasks. The aim of this project is to create aircraft simulations for game development by utilizing reinforcement-learning techniques, so that it can provide a foundational idea of the usage of this algorithm in path-detection based decision-making techniques. The goal is to demonstrate the effectiveness of reinforcement learning in a real-world scenario, where the aircraft independently assesses and selects its flying trajectory. The system will undergo testing in three distinct phases, involving the utilization of Blender3D, Unity 3D, and Anaconda prompts. The results will then be compared using TensorFlow. Several training sessions will be conducted in various environments using the Anaconda environment to optimize the outcomes. In the latter stages of development, a dynamic user interface will be implemented to enhance the user's experience. The method is anticipated to produce 152% improved AI-trained data, which can be utilized for constructing extensive simulation and game-proj
With growing awareness of privacy protection, Federated Learning (FL) in vehicular network scenarios effectively addresses privacy concerns, leading to the development of Federated Vehicular Networks (FVN). In FVN, ve...
详细信息
In this paper, we construct Error-Correcting Graph Codes. An error-correcting graph code of distance δ is a family C of graphs, on a common vertex set of size n, such that if we start with any graph in C, we would ha...
详细信息
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are v...
详细信息
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are vital in facilitating end-user communication ***,the security of Android systems has been challenged by the sensitive data involved,leading to vulnerabilities in mobile devices used in 5G *** vulnerabilities expose mobile devices to cyber-attacks,primarily resulting from security ***-permission apps in Android can exploit these channels to access sensitive information,including user identities,login credentials,and geolocation *** such attack leverages"zero-permission"sensors like accelerometers and gyroscopes,enabling attackers to gather information about the smartphone's *** underscores the importance of fortifying mobile devices against potential future *** research focuses on a new recurrent neural network prediction model,which has proved highly effective for detecting side-channel attacks in mobile devices in 5G *** conducted state-of-the-art comparative studies to validate our experimental *** results demonstrate that even a small amount of training data can accurately recognize 37.5%of previously unseen user-typed ***,our tap detection mechanism achieves a 92%accuracy rate,a crucial factor for text *** findings have significant practical implications,as they reinforce mobile device security in 5G networks,enhancing user privacy,and data protection.
作者:
Mahapatra, AbhijeetPradhan, RosyMajhi, Santosh K.Mishra, Kaushik
Department of Computer Science & Engineering Odisha Burla768018 India Sikkim Manipal University
Sikkim Manipal Institute of Technology Department of Artificial Intelligence and Data Science Sikkim India
Department of Electrical Engineering Odisha Burla768018 India
Department of Computer Science and Information Technology Chhattisgarh Bilaspur495009 India Manipal Academy of Higher Education
Manipal Institute of Technology Bengaluru Department of Computer Science and Engineering Manipal India
The rapid proliferation of IoT devices like smartphones, smartwatches, etc. has significantly elevated the quantity of data requiring execution. It poses challenges for centralized Cloud computing servers, such as lat...
详细信息
The dynamic gas flow model with static electric driven compressor (EDC) model has been widely studied in coordinated analysis of integrated electricity-gas system (IEGS). However, as a crucial coupling unit, the boost...
详细信息
Fruit safety is a critical component of the global economy, particularly within the agricultural sector. There has been a recent surge in the incidence of diseases affecting fruits, leading to economic setbacks in agr...
详细信息
In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communicati...
详细信息
In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communication through open networks is insecure and has many vulnerabilities, making it susceptible to unauthorized access and misuse. Encryption models are used to secure medical data from unauthorized access. In this work, we propose a bit-level encryption model having three phases: preprocessing, confusion, and diffusion. This model is designed for different types of medical data including patient information, clinical data, medical signals, and images of different modalities. Also, the proposed model is effectively implemented for grayscale and color images with varying aspect ratios. Preprocessing has been applied based on the type of medical data. A random permutation has been used to scramble the data values to remove the correlation, and multilevel chaotic maps are fused with the cyclic redundancy check method. A circular shift is used in the diffusion phase to increase randomness and security, providing protection against potential attacks. The CRC method is further used at the receiver side for error detection. The performance efficiency of the proposed encryption model is proved in terms of histogram analysis, information entropy, correlation analysis, signal-to-noise ratio, peak signal-to-noise ratio, number of pixels changing rate, and unified average changing intensity. The proposed bit-level encryption model therefore achieves information entropy values ranging from 7.9669 to 8.000, which is close to the desired value of 8. Correlation coefficient values of the encrypted data approach to zero or are negative, indicating minimal correlation in encrypted data. Resistance against differential attacks is demonstrated by NPCR and UACI values exceeding 0.9960 and 0.3340, respectively. The key space of the proposed model is 1096, which is substantially mor
This paper presents a resilience-driven framework leveraging advanced control technologies, particularly a Markov chain approach, to enhance the robustness of peer-to-peer (P2P) energy trading networks under Low Proba...
详细信息
Sound event detection and classification present significant challenges, particularly in noisy environments with multiple overlapping sources. This paper introduces an innovative architecture for multiple sound event ...
详细信息
暂无评论