咨询与建议

限定检索结果

文献类型

  • 2,667 篇 会议
  • 2,267 篇 期刊文献
  • 24 册 图书

馆藏范围

  • 4,958 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,938 篇 工学
    • 2,279 篇 计算机科学与技术...
    • 1,930 篇 软件工程
    • 660 篇 信息与通信工程
    • 503 篇 控制科学与工程
    • 483 篇 生物工程
    • 341 篇 电气工程
    • 340 篇 生物医学工程(可授...
    • 294 篇 光学工程
    • 246 篇 电子科学与技术(可...
    • 169 篇 网络空间安全
    • 160 篇 化学工程与技术
    • 151 篇 机械工程
    • 143 篇 安全科学与工程
    • 123 篇 动力工程及工程热...
    • 111 篇 交通运输工程
    • 89 篇 仪器科学与技术
  • 1,670 篇 理学
    • 756 篇 数学
    • 556 篇 生物学
    • 501 篇 物理学
    • 306 篇 统计学(可授理学、...
    • 199 篇 化学
    • 139 篇 系统科学
  • 826 篇 管理学
    • 484 篇 管理科学与工程(可...
    • 387 篇 图书情报与档案管...
    • 229 篇 工商管理
  • 346 篇 医学
    • 297 篇 临床医学
    • 266 篇 基础医学(可授医学...
    • 160 篇 公共卫生与预防医...
    • 145 篇 药学(可授医学、理...
  • 156 篇 法学
    • 141 篇 社会学
  • 72 篇 经济学
  • 50 篇 农学
  • 46 篇 教育学
  • 22 篇 文学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 324 篇 accuracy
  • 263 篇 deep learning
  • 194 篇 machine learning
  • 187 篇 training
  • 169 篇 feature extracti...
  • 163 篇 real-time system...
  • 162 篇 convolutional ne...
  • 147 篇 computational mo...
  • 132 篇 predictive model...
  • 119 篇 data models
  • 103 篇 internet of thin...
  • 103 篇 artificial intel...
  • 92 篇 optimization
  • 91 篇 reinforcement le...
  • 83 篇 semantics
  • 82 篇 support vector m...
  • 76 篇 security
  • 72 篇 adaptation model...
  • 71 篇 machine learning...
  • 71 篇 measurement

机构

  • 179 篇 department of co...
  • 142 篇 moe key lab of a...
  • 80 篇 tencent ai lab
  • 75 篇 department of co...
  • 58 篇 lovely professio...
  • 51 篇 moe key lab of a...
  • 44 篇 key laboratory o...
  • 41 篇 the islamic univ...
  • 38 篇 shanghai ai labo...
  • 37 篇 department of co...
  • 34 篇 the islamic univ...
  • 33 篇 department of co...
  • 32 篇 department of co...
  • 30 篇 university of ch...
  • 30 篇 school of comput...
  • 29 篇 school of comput...
  • 29 篇 department of el...
  • 26 篇 department of co...
  • 25 篇 department of cs...
  • 24 篇 department of co...

作者

  • 107 篇 yu kai
  • 98 篇 zhao hai
  • 57 篇 yan junchi
  • 57 篇 qian yanmin
  • 41 篇 zhang zhuosheng
  • 36 篇 chen xie
  • 36 篇 chen lu
  • 33 篇 li zuchao
  • 32 篇 yanmin qian
  • 30 篇 al-turjman fadi
  • 27 篇 lyu michael r.
  • 25 篇 fadi al-turjman
  • 23 篇 zhu su
  • 21 篇 guo yiwei
  • 21 篇 junchi yan
  • 21 篇 liu tongliang
  • 20 篇 ramiz salama
  • 19 篇 han bo
  • 18 篇 xu hongshen
  • 18 篇 chen hao

语言

  • 3,319 篇 英文
  • 1,634 篇 其他
  • 15 篇 中文
  • 3 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 阿拉伯文
  • 1 篇 法文
  • 1 篇 俄文
检索条件"机构=Department of Computer Science and Engineering(AI&ML)"
4958 条 记 录,以下是4611-4620 订阅
排序:
Asymmetric Cross-Guided Attention Network for Actor and Action Video Segmentation From Natural Language Query
Asymmetric Cross-Guided Attention Network for Actor and Acti...
收藏 引用
International Conference on computer Vision (ICCV)
作者: Hao Wang Cheng Deng Junchi Yan Dacheng Tao School of Electronic Engineering Xidian University Xi’an China Tencent AI Lab Shenzhen China Department of CSE and MoE Key Lab of Artificial Intelligence Shanghai Jiao Tong University UBTECH Sydney AI Centre School of Computer Science FEIT University of Sydney Australia
Actor and action video segmentation from natural language query aims to selectively segment the actor and its action in a video based on an input textual description. Previous works mostly focus on learning simple cor... 详细信息
来源: 评论
Modeling named entity embedding distribution into hypersphere
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhuosheng Tang, Bingjie Li, Zuchao Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China Computer Science Department Brown University RI United States
This work models named entity distribution from a way of visualizing topological structure of embedding space, so that we make an assumption that most, if not all, named entities (NEs) for a language tend to aggregate... 详细信息
来源: 评论
Subword ELMo
arXiv
收藏 引用
arXiv 2019年
作者: Li, Jiangtong Zhao, Hai Li, Zuchao Bi, Wei Liu, Xiaojiang Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Tencent AI Lab Shenzhen China
Embedding from Language Models (ELMo) has shown to be effective for improving many natural language processing (NLP) tasks, and ELMo takes character information to compose word representation to train language models.... 详细信息
来源: 评论
The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future (vol 398, pg 1619, 2021)
收藏 引用
LANCET 2021年 第10317期398卷 2148-2148页
作者: Romanello, M. McGushin, A. Di Napoli, C. [a]Institute for Global Health University College London London UK [b]Institute for Sustainable Resources University College London London UK [c]UCL Energy Institute University College London London UK [d]Institute for Environmental Design and Engineering University College London London UK [e]Department of Geography University College London London UK [f]The Bartlett School of Sustainable Construction University College London London UK [g]Centre for Human Health and Performance University College London London UK [h]School of Agriculture Policy and Development University of Reading Reading UK [i]Department of Meteorology University of Reading Reading UK [j]The Walker Institute University of Reading Reading UK [k]Department of Health Sciences University of York York UK [l]Institute for Environment and Human Security United Nations University Bonn Germany [m]Centre on Climate Change and Planetary Health London School of Hygiene & Tropical Medicine London UK [n]Centre for Mathematical Modelling of Infectious Diseases London School of Hygiene & Tropical Medicine London UK [o]Department of Public Health Environments and Society London School of Hygiene & Tropical Medicine London UK [p]Department of Earth System Science Tsinghua University Beijing China [q]Department of Environment Climate Change and Health World Health Organization Geneva Switzerland [r]Institute for Environmental Sciences World Health Organization Geneva Switzerland [s]Centre for Climate Change and Social Transformations School of Psychology Cardiff University Cardiff UK [t]Yale Center on Climate Change and Health Yale University New Haven CT USA [u]School of Government University of Birmingham Birmingham UK [v]Economic analysis of Climate Impacts and Policy Centro Euro-Mediterraneo sui Cambiamenti Climatici Venice Italy [w]Natural Resources Institute University of Greenwich London UK [x]Department of Global Health University of Washington Seattle WA USA [y]Centre for He
来源: 评论
Author Correction: Pretrainable geometric graph neural network for antibody affinity maturation
收藏 引用
Nature communications 2024年 第1期15卷 8675页
作者: Huiyu Cai Zuobai Zhang Mingkai Wang Bozitao Zhong Quanxiao Li Yuxuan Zhong Yanling Wu Tianlei Ying Jian Tang BioGeometry Beijing China. Mila-Québec AI Institute Montréal QC Canada. Department of Computer Science and Operations Research Université de Montréal Montréal QC Canada. Shanghai Engineering Research Center for Synthetic Immunology Fudan University Shanghai China. MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection Shanghai Institute of Infectious Disease and Biosecurity School of Basic Medical Sciences Fudan University Shanghai China. Shanghai Engineering Research Center for Synthetic Immunology Fudan University Shanghai China. yanlingwu@***. MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection Shanghai Institute of Infectious Disease and Biosecurity School of Basic Medical Sciences Fudan University Shanghai China. yanlingwu@***. Shanghai Engineering Research Center for Synthetic Immunology Fudan University Shanghai China. tlying@***. MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection Shanghai Institute of Infectious Disease and Biosecurity School of Basic Medical Sciences Fudan University Shanghai China. tlying@***. BioGeometry Beijing China. tangjian@***. Mila-Québec AI Institute Montréal QC Canada. tangjian@***. Department of Decision Sciences HEC Montréal Montréal QC Canada. tangjian@***.
来源: 评论
ExTra: Transfer-guided exploration
arXiv
收藏 引用
arXiv 2019年
作者: Santara, Anirban Ravindran, Balaraman Madan, Rishabh Mitra, Pabitra Department of Computer Science and Engineering IIT Kharagpur Kharagpur WB721302 Robert Bosch Centre for Data Science and AI IIT Madras ChennaiTN600036 Autonomous Ground Vehicle Research Group IIT Kharagpur KharagpurWB721302
In this work we present a novel approach for transfer-guided exploration in reinforcement learning that is inspired by the human tendency to leverage experiences from similar encounters in the past while navigating a ... 详细信息
来源: 评论
Adaptive initialization method for K-means algorithm
arXiv
收藏 引用
arXiv 2019年
作者: Yang, Jie Wang, Yu-Kai Yao, Xin Lin, Chin-Teng Computational Intelligence and Brain Computer Interface Lab Centre for AI FEIT University of Technology Sydney Australia Shenzhen Key Laboratory of Computational Intelligence Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China CERCIA School of Computer Science University of Birmingham BirminghamB15 2TT United Kingdom
The K-means algorithm is a widely used clustering algorithm that offers simplicity and efficiency. However, the traditional K-means algorithm uses the random method to determine the initial cluster centers, which make... 详细信息
来源: 评论
Multiscale PHATE Exploration of SARS-CoV-2 Data Reveals Multimodal Signatures of Disease
Research Square
收藏 引用
Research Square 2021年
作者: Kuchroo, Manik Huang, Jessie Wong, Patrick Grenier, Jean-Christophe Shung, Dennis Tong, Alexander Lucas, Carolina Klein, Jon Burkhardt, Daniel B. Gigante, Scott Godavarthi, Abhinav Rieck, Bastian Israelow, Benjamin Simonov, Michael Mao, Tianyang Oh, Ji Eun Silva, Julio Takahashi, Takehiro Odio, Camila D. Casanovas-Massana, Arnau Fournier, John Farhadian, Shelli Dela Cruz, Charles S. Ko, Albert I. Hirn, Matthew J. Wilson, F. Perry Hussin, Julie Wolf, Guy Iwasaki, Akiko Krishnaswamy, Smita Department of Neuroscience Yale University New HavenCT United States Department of Computer Science Yale University New HavenCT United States Department of Immunobiology Yale University New HavenCT United States Montreal Heart Institute MontréalQC Canada Department of Medicine Yale University New HavenCT United States Department of Genetics Yale University New HavenCT United States Computational Biology Bioinformatics Program Yale University New HavenCT United States Department of Applied Mathematics Yale University New HavenCT United States Department of Biosystems Science and Engineering ETH Zurich Switzerland Department of Epidemiology of Microbial Diseases Yale School of Public Health New HavenCT United States Department of Medicine Section of Infectious Diseases Yale University School of Medicine New HavenCT United States Department of Medicine Section of Pulmonary and Critical Care Medicine Yale University School of Medicine New HavenCT United States Department of Computational Mathematics Science and Engineering Michigan State University East LansingMI United States Department of Mathematics Michigan State University East LansingMI United States Clinical and Translational Research Accelerator Department of Medicine Yale University New HavenCT United States Faculty of Medicine Université de Montréal Québec Canada Mila – Quebec AI institute MontréalQC Canada Department of Mathematics and Statistics Université de Montréal MontréalQC Canada Howard Hughes Medical Institute Chevy ChaseMD United States
The biomedical community is producing increasingly high dimensional datasets, integrated from hundreds of patient samples, which current computational techniques struggle to explore. To uncover biological meaning from... 详细信息
来源: 评论
Recognizing Disguised Faces in the Wild
IEEE Transactions on Biometrics, Behavior, and Identity Scie...
收藏 引用
IEEE Transactions on Biometrics, Behavior, and Identity science 2019年 第2期1卷 97-108页
作者: Maneet Singh Richa Singh Mayank Vatsa Nalini K. Ratha Rama Chellappa Department of Computer Science and Engineering IIIT Delhi New Delhi India IBM Research AI IBM T. J. Watson Research Center Yorktown Heights NY USA UMIACS University of Maryland at College Park College Park MD USA
Research in face recognition has seen tremendous growth over the past couple of decades. Beginning from algorithms capable of performing recognition in constrained environments, existing face recognition systems achie... 详细信息
来源: 评论
DAC: Data-free automatic acceleration of convolutional networks
arXiv
收藏 引用
arXiv 2018年
作者: Li, Xin Zhang, Shuai Jiang, Bolan Qi, Yingyong Chuah, Mooi Choo Bi, Ning Qualcomm AI Research Department of Computer Science and Engineering Lehigh University
Deploying a deep learning model on mobile/IoT devices is a challenging task. The difficulty lies in the trade-off between computation speed and accuracy. A complex deep learning model with high accuracy runs slowly on... 详细信息
来源: 评论