The increasing prevalence of Internet of Things(IoT)devices has introduced a new phase of connectivity in recent years and,concurrently,has opened the floodgates for growing cyber *** the myriad of potential attacks,D...
详细信息
The increasing prevalence of Internet of Things(IoT)devices has introduced a new phase of connectivity in recent years and,concurrently,has opened the floodgates for growing cyber *** the myriad of potential attacks,Denial of Service(DoS)attacks and Distributed Denial of Service(DDoS)attacks remain a dominant concern due to their capability to render services inoperable by overwhelming systems with an influx of *** IoT devices often lack the inherent security measures found in more mature computing platforms,the need for robust DoS/DDoS detection systems tailored to IoT is paramount for the sustainable development of every domain that IoT *** this study,we investigate the effectiveness of three machine learning(ML)algorithms:extreme gradient boosting(XGB),multilayer perceptron(MLP)and random forest(RF),for the detection of IoTtargeted DoS/DDoS attacks and three feature engineering methods that have not been used in the existing stateof-the-art,and then employed the best performing algorithm to design a prototype of a novel real-time system towards detection of such DoS/DDoS *** CICIoT2023 dataset was derived from the latest real-world IoT traffic,incorporates both benign and malicious network traffic patterns and after data preprocessing and feature engineering,the data was fed into our models for both training and validation,where findings suggest that while all threemodels exhibit commendable accuracy in detectingDoS/DDoS attacks,the use of particle swarmoptimization(PSO)for feature selection has made great improvements in the performance(accuracy,precsion recall and F1-score of 99.93%for XGB)of the ML models and their execution time(491.023 sceonds for XGB)compared to recursive feature elimination(RFE)and randomforest feature importance(RFI)*** proposed real-time system for DoS/DDoS attack detection entails the implementation of an platform capable of effectively processing and analyzing network traffic in *** inv
Research on real-time data visualization methods is necessary to achieve the most accurate and clear representation of information. Creating specific boards and modifying current platforms are two key tasks in perform...
详细信息
The Internet has been enhanced recently by blockchain and Internet of Things(IoT)*** Internet of Things is a network of various sensor-equipped *** gradually integrates the Internet,sensors,and cloud *** is based on e...
详细信息
The Internet has been enhanced recently by blockchain and Internet of Things(IoT)*** Internet of Things is a network of various sensor-equipped *** gradually integrates the Internet,sensors,and cloud *** is based on encryption algorithms,which are shared database technologies on the *** technology has grown significantly because of its features,such as flexibility,support for integration,anonymity,decentralization,and independent *** nodes in the blockchain network are used to verify online ***,this integration creates scalability,interoperability,and security *** the last decade,several advancements in blockchain technology have drawn attention fromresearch communities and *** technology helps IoT networks become more reliable and enhance security and *** also removes single points of failure and lowers the *** recent years,there has been an increasing amount of literature on IoT and blockchain technology *** paper extensively examines the current state of blockchain technologies,focusing specifically on their integration into the Internet of ***,it highlights the benefits,drawbacks,and opportunities of recent studies on security issues based on blockchain solutions into *** survey examined various research papers fromdifferent types of ***,a review of the other IoT applications has been included,focusing on the security requirements and challenges in IoT-based *** research directions are gathered for the effective integration of Blockchain and IoT.
In recent years, maximizing the energy conversion performance of photovoltaic (PV) systems has become increasingly important, especially in the context of sustainable energy development. This study utilizes Internet o...
详细信息
Wireless Sensor Network (WSN) is a network with a good organization that provides efficient communication services. However, high energy usage and attack data sometimes become the key challenges that degrade the entir...
详细信息
Crop diseases have a significant impact on plant growth and can lead to reduced *** methods of disease detection rely on the expertise of plant protection experts,which can be subjective and dependent on individual ex...
详细信息
Crop diseases have a significant impact on plant growth and can lead to reduced *** methods of disease detection rely on the expertise of plant protection experts,which can be subjective and dependent on individual experience and *** address this,the use of digital image recognition technology and deep learning algorithms has emerged as a promising approach for automating plant disease *** this paper,we propose a novel approach that utilizes a convolutional neural network(CNN)model in conjunction with Inception v3 to identify plant leaf *** research focuses on developing a mobile application that leverages this mechanism to identify diseases in plants and provide recommendations for overcoming specific *** models were trained using a dataset consisting of 80,848 images representing 21 different plant leaves categorized into 60 distinct *** rigorous training and evaluation,the proposed system achieved an impressive accuracy rate of 99%.This mobile application serves as a convenient and valuable advisory tool,providing early detection and guidance in real agricultural *** significance of this research lies in its potential to revolutionize plant disease detection and management *** automating the identification process through deep learning algorithms,the proposed system eliminates the subjective nature of expert-based diagnosis and reduces dependence on individual *** integration of mobile technology further enhances accessibility and enables farmers and agricultural practitioners to swiftly and accurately identify diseases in their crops.
So far, the task of Scientific Query-Focused Summarization (Sci-QFS) has lagged in development when compared to other areas of Scientific Natural Language Processing because of the lack of data. In this work, we propo...
详细信息
Smartphones contain a vast amount of information about their users, which can be used as evidence in criminal cases. However, the sheer volume of data can make it challenging for forensic investigators to identify and...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research is motivated by the pressing demand to enhance transportation mode classification, leveraging the potential of smartphone sensors, notably the accelerometer, magnetometer, and gyroscope. In response to this challenge, we present a novel automated classification model rooted in deep reinforcement learning. Our model stands out for its innovative approach of harnessing enhanced features through artificial neural networks (ANNs) and visualizing the classification task as a structured series of decision-making events. Our model adopts an improved differential evolution (DE) algorithm for initializing weights, coupled with a specialized agent-environment relationship. Every correct classification earns the agent a reward, with additional emphasis on the accurate categorization of less frequent modes through a distinct reward strategy. The Upper Confidence Bound (UCB) technique is used for action selection, promoting deep-seated knowledge, and minimizing reliance on chance. A notable innovation in our work is the introduction of a cluster-centric mutation operation within the DE algorithm. This operation strategically identifies optimal clusters in the current DE population and forges potential solutions using a pioneering update mechanism. When assessed on the extensive HTC dataset, which includes 8311 hours of data gathered from 224 participants over two years. Noteworthy results spotlight an accuracy of 0.88±0.03 and an F-measure of 0.87±0.02, underscoring the efficacy of our approach for large-scale transportation mode classification tasks. This work introduces an innovative strategy in the realm of transportation mode classification, emphasizing both precision and reliability, addressing the pressing need for enhanced classification mechanisms in an eve
This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented *** proposed approach is a combination of an enhanced grey wolf optimizer(E...
详细信息
This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented *** proposed approach is a combination of an enhanced grey wolf optimizer(EGWO)and an extreme learning machine(ELM).EGWO is an augmented form of the classic grey wolf optimizer(GWO).Compared to standard GWO,EGWO has a better hunting mechanism and produces an optimal *** EGWO was used to optimize the ELM structure and a hybrid model,ELM-EGWO,was *** train and validate the proposed ELM-EGWO model,a sum of 361 experimental results featuring five influencing factors was *** on sensitivity analysis,three distinct cases of influencing parameters were considered to investigate the effect of influencing factors on predictive *** consequences show that the constructed ELM-EGWO achieved the most accurate precision in both training(RMSE=0.0959)and testing(RMSE=0.0912)*** outcomes of the ELM-EGWO are significantly superior to those of deep neural networks(DNN),k-nearest neighbors(KNN),long short-term memory(LSTM),and other hybrid ELMs constructed with GWO,particle swarm optimization(PSO),harris hawks optimization(HHO),salp swarm algorithm(SSA),marine predators algorithm(MPA),and colony predation algorithm(CPA).The overall results demonstrate that the newly suggested ELM-EGWO has the potential to estimate the CS of metakaolin-contained cemented materials with a high degree of precision and robustness.
暂无评论