Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)*** devices enable limited computational capacity and energy availability that hamper end ...
详细信息
Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)*** devices enable limited computational capacity and energy availability that hamper end user *** designed a novel performance measurement index to gauge a device’s resource *** examination addresses the offloading mechanism issues,where the end user(EU)offloads a part of its workload to a nearby edge server(ES).Sometimes,the ES further offloads the workload to another ES or cloud server to achieve reliable performance because of limited resources(such as storage and computation).The manuscript aims to reduce the service offloading rate by selecting a potential device or server to accomplish a low average latency and service completion time to meet the deadline constraints of sub-divided *** this regard,an adaptive online status predictive model design is significant for prognosticating the asset requirement of arrived services to make float ***,the development of a reinforcement learning-based flexible x-scheduling(RFXS)approach resolves the service offloading issues,where x=service/resource for producing the low latency and high performance of the *** approach to the theoretical bound and computational complexity is derived by formulating the system efficiency.A quadratic restraint mechanism is employed to formulate the service optimization issue according to a set ofmeasurements,as well as the behavioural association rate and adulation *** system managed an average 0.89%of the service offloading rate,with 39 ms of delay over complex scenarios(using three servers with a 50%service arrival rate).The simulation outcomes confirm that the proposed scheme attained a low offloading uncertainty,and is suitable for simulating heterogeneous CPS frameworks.
Automatic Speech Recognition (ASR) has been the regnant research area in the domain of Natural Language Processing for the last few decades. Past years’ advancement provides progress in this area of research. The acc...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease ...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease diagnosis has demonstrated commendable effectiveness in promptly diagnosing patients and curbing infection transmission. The study introduces a deep learning-based model tailored for COVID-19 detection, leveraging three prevalent medical imaging modalities: computed tomography (CT), chest X-ray (CXR), and Ultrasound. Various deep Transfer Learning Convolutional Neural Network-based (CNN) models have undergone assessment for each imaging modality. For each imaging modality, this study has selected the two most accurate models based on evaluation metrics such as accuracy and loss. Additionally, efforts have been made to prune unnecessary weights from these models to obtain more efficient and sparse models. By fusing these pruned models, enhanced performance has been achieved. The models have undergone rigorous training and testing using publicly available real-world medical datasets, focusing on classifying these datasets into three distinct categories: Normal, COVID-19 Pneumonia, and non-COVID-19 Pneumonia. The primary objective is to develop an optimized and swift model through strategies like Transfer Learning, Ensemble Learning, and reducing network complexity, making it easier for storage and transfer. The results of the trained network on test data exhibit promising outcomes. The accuracy of these models on the CT scan, X-ray, and ultrasound datasets stands at 99.4%, 98.9%, and 99.3%, respectively. Moreover, these models’ sizes have been substantially reduced and optimized by 51.93%, 38.00%, and 69.07%, respectively. This study proposes a computer-aided-coronavirus-detection system based on three standard medical imaging techniques. The intention is to assist radiologists in accurately and swiftly diagnosing the disease, especially during the screen
Cardiovascular disease(CVD)remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis,driven by risk factors such as hypertension,high cholesterol,and irregular puls...
详细信息
Cardiovascular disease(CVD)remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis,driven by risk factors such as hypertension,high cholesterol,and irregular pulse *** diagnostic methods often struggle with the nuanced interplay of these risk factors,making early detection *** this research,we propose a novel artificial intelligence-enabled(AI-enabled)framework for CVD risk prediction that integrates machine learning(ML)with eXplainable AI(XAI)to provide both high-accuracy predictions and transparent,interpretable *** to existing studies that typically focus on either optimizing ML performance or using XAI separately for local or global explanations,our approach uniquely combines both local and global interpretability using Local Interpretable Model-Agnostic Explanations(LIME)and SHapley Additive exPlanations(SHAP).This dual integration enhances the interpretability of the model and facilitates clinicians to comprehensively understand not just what the model predicts but also why those predictions are made by identifying the contribution of different risk factors,which is crucial for transparent and informed decision-making in *** framework uses ML techniques such as K-nearest neighbors(KNN),gradient boosting,random forest,and decision tree,trained on a cardiovascular ***,the integration of LIME and SHAP provides patient-specific insights alongside global trends,ensuring that clinicians receive comprehensive and actionable *** experimental results achieve 98%accuracy with the Random Forest model,with precision,recall,and F1-scores of 97%,98%,and 98%,*** innovative combination of SHAP and LIME sets a new benchmark in CVD prediction by integrating advanced ML accuracy with robust interpretability,fills a critical gap in existing *** framework paves the way for more explainable and transparent decision-making in he
Due to recent expansion of wireless communications, it has become impossible to cope with the allotment of the precious spectrum while resources for wireless communication are bounded and finite. Hence, the cognitive ...
详细信息
Cloud computing is an emerging field in information technology, enabling users to access a shared pool of computing resources. Despite its potential, cloud technology presents various challenges, with one of the most ...
详细信息
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Techniqu...
详细信息
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique (SMOTE) was developed to address the problem of imbalanced data. Over time, several weaknesses of the SMOTE method have been identified in generating synthetic minority class data, such as overlapping, noise, and small disjuncts. However, these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping. Therefore, this study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated data. This study proposes a combined approach of filtering, clustering, and distance modification to reduce noise and overlapping produced by SMOTE. Filtering removes minority class data (noise) located in majority class regions, with the k-nn method applied for filtering. The use of Noise Reduction (NR), which removes data that is considered noise before applying SMOTE, has a positive impact in overcoming data imbalance. Clustering establishes decision boundaries by partitioning data into clusters, allowing SMOTE with modified distance metrics to generate minority class data within each cluster. This SMOTE clustering and distance modification approach aims to minimize overlap in synthetic minority data that could introduce noise. The proposed method is called “NR-Clustering SMOTE,” which has several stages in balancing data: (1) filtering by removing minority classes close to majority classes (data noise) using the k-nn method;(2) clustering data using K-means aims to establish decision boundaries by partitioning data into several clusters;(3) applying SMOTE oversampling with Manhattan distance within each cluster. Test results indicate that the proposed NR-Clustering SMOTE method achieves the best performance across all evaluation metrics for classification methods such as Random Forest, SVM, and Naїve Bayes, compared t
This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in differe...
详细信息
This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in different environmental *** propose a robust FLC with low computational complexity by reducing the number of membership functions and *** optimize the performance of the FLC,metaheuristic algorithms are employed to determine the parameters of the *** evaluate the proposed FLC in various panel configurations under different environmental *** results indicate that the proposed FLC can easily adapt to various panel configurations and perform better than other benchmarks in terms of enhanced stability,responsiveness,and power transfer under various scenarios.
Nowadays,smart buildings rely on Internet of things(loT)technology derived from the cloud and fog computing paradigms to coordinate and collaborate between connected *** is characterized by low latency with a wider sp...
详细信息
Nowadays,smart buildings rely on Internet of things(loT)technology derived from the cloud and fog computing paradigms to coordinate and collaborate between connected *** is characterized by low latency with a wider spread and geographically distributed nodes to support mobility,real-time interaction,and location-based *** provide optimum quality of user life in moderm buildings,we rely on a holistic Framework,designed in a way that decreases latency and improves energy saving and services efficiency with different *** EVent system Specification(DEVS)is a formalism used to describe simulation models in a modular *** this work,the sub-models of connected objects in the building are accurately and independently designed,and after installing them together,we easily get an integrated model which is subject to the fog computing *** results show that this new approach significantly,improves energy efficiency of buildings and reduces ***,with DEVS,we can easily add or remove sub-models to or from the overall model,allowing us to continually improve our designs.
Airplanes are a social necessity for movement of humans,goods,and *** are generally safe modes of transportation;however,incidents and accidents occasionally *** prevent aviation accidents,it is necessary to develop a...
详细信息
Airplanes are a social necessity for movement of humans,goods,and *** are generally safe modes of transportation;however,incidents and accidents occasionally *** prevent aviation accidents,it is necessary to develop a machine-learning model to detect and predict commercial flights using automatic dependent surveillance–broadcast *** study combined data-quality detection,anomaly detection,and abnormality-classification-model *** research methodology involved the following stages:problem statement,data selection and labeling,prediction-model development,deployment,and *** data labeling process was based on the rules framed by the international civil aviation organization for commercial,jet-engine flights and validated by expert commercial *** results showed that the best prediction model,the quadratic-discriminant-analysis,was 93%accurate,indicating a“good fit”.Moreover,the model’s area-under-the-curve results for abnormal and normal detection were 0.97 and 0.96,respectively,thus confirming its“good fit”.
暂无评论