咨询与建议

限定检索结果

文献类型

  • 2,922 篇 会议
  • 2,311 篇 期刊文献
  • 25 册 图书

馆藏范围

  • 5,258 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,048 篇 工学
    • 2,378 篇 计算机科学与技术...
    • 2,011 篇 软件工程
    • 698 篇 信息与通信工程
    • 530 篇 控制科学与工程
    • 495 篇 生物工程
    • 358 篇 电气工程
    • 349 篇 生物医学工程(可授...
    • 301 篇 光学工程
    • 255 篇 电子科学与技术(可...
    • 189 篇 网络空间安全
    • 161 篇 化学工程与技术
    • 158 篇 机械工程
    • 152 篇 安全科学与工程
    • 133 篇 动力工程及工程热...
    • 115 篇 交通运输工程
    • 97 篇 仪器科学与技术
  • 1,720 篇 理学
    • 781 篇 数学
    • 568 篇 生物学
    • 512 篇 物理学
    • 318 篇 统计学(可授理学、...
    • 204 篇 化学
    • 144 篇 系统科学
  • 868 篇 管理学
    • 513 篇 管理科学与工程(可...
    • 401 篇 图书情报与档案管...
    • 238 篇 工商管理
  • 357 篇 医学
    • 304 篇 临床医学
    • 271 篇 基础医学(可授医学...
    • 166 篇 公共卫生与预防医...
    • 148 篇 药学(可授医学、理...
  • 162 篇 法学
    • 147 篇 社会学
  • 75 篇 经济学
  • 52 篇 农学
  • 50 篇 教育学
  • 24 篇 文学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 368 篇 accuracy
  • 292 篇 deep learning
  • 212 篇 machine learning
  • 206 篇 training
  • 189 篇 real-time system...
  • 187 篇 convolutional ne...
  • 185 篇 feature extracti...
  • 169 篇 computational mo...
  • 156 篇 predictive model...
  • 131 篇 data models
  • 108 篇 internet of thin...
  • 108 篇 artificial intel...
  • 102 篇 reinforcement le...
  • 98 篇 optimization
  • 96 篇 support vector m...
  • 90 篇 security
  • 85 篇 machine learning...
  • 84 篇 semantics
  • 77 篇 adaptation model...
  • 76 篇 measurement

机构

  • 175 篇 department of co...
  • 142 篇 moe key lab of a...
  • 81 篇 department of co...
  • 80 篇 tencent ai lab
  • 66 篇 lovely professio...
  • 51 篇 moe key lab of a...
  • 44 篇 the islamic univ...
  • 43 篇 key laboratory o...
  • 41 篇 the islamic univ...
  • 39 篇 department of co...
  • 38 篇 shanghai ai labo...
  • 37 篇 department of co...
  • 32 篇 department of co...
  • 30 篇 university of ch...
  • 30 篇 school of comput...
  • 30 篇 school of comput...
  • 29 篇 department of cs...
  • 29 篇 department of el...
  • 26 篇 department of co...
  • 25 篇 peng cheng labor...

作者

  • 107 篇 yu kai
  • 98 篇 zhao hai
  • 57 篇 qian yanmin
  • 56 篇 yan junchi
  • 41 篇 zhang zhuosheng
  • 36 篇 chen xie
  • 33 篇 li zuchao
  • 31 篇 yanmin qian
  • 30 篇 al-turjman fadi
  • 29 篇 chen lu
  • 27 篇 lyu michael r.
  • 25 篇 fadi al-turjman
  • 23 篇 zhu su
  • 22 篇 zhu jun
  • 21 篇 guo yiwei
  • 21 篇 junchi yan
  • 21 篇 liu tongliang
  • 20 篇 ramiz salama
  • 19 篇 han bo
  • 18 篇 pareek piyush ku...

语言

  • 3,533 篇 英文
  • 1,720 篇 其他
  • 15 篇 中文
  • 3 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 阿拉伯文
  • 1 篇 法文
  • 1 篇 俄文
检索条件"机构=Department of Computer Science and Engineering AI ML"
5258 条 记 录,以下是4961-4970 订阅
排序:
A Smart Sliding Chinese Pinyin Input Method Editor on Touchscreen
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhuosheng Meng, Zhen Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
This paper presents a smart sliding Chinese pinyin Input Method Editor (IME) for touchscreen devices which allows user finger sliding from one key to another on the touchscreen instead of tapping keys one by one, whil... 详细信息
来源: 评论
Addressing word-order divergence in multilingual neural machine translation for extremely low resource languages
arXiv
收藏 引用
arXiv 2018年
作者: Rudra Murthy, V. Kunchukuttan, Anoop Bhattacharyya, Pushpak Department of Computer Science and Engineering IIT Bombay India Microsoft AI & Research Hyderabad India
Transfer learning approaches for Neural Machine Translation (NMT) trains a NMT model on an assisting language-target language pair (parent model) which is later fine-tuned for the source language-target language pair ... 详细信息
来源: 评论
GenSense: A generalized sense retrofitting model  27
GenSense: A generalized sense retrofitting model
收藏 引用
27th International Conference on Computational Linguistics, COLING 2018
作者: Lee, Yang-Yin Yen, Ting-Yu Huang, Hen-Hsen Shiue, Yow-Ting Chen, Hsin-Hsi Department of Computer Science and Information Engineering National Taiwan University No. 1 Sec. 4 Roosevelt Road Taipei10617 Taiwan MOST Joint Research Center for AI Technology All Vista Healthcare Taiwan
With the aid of recently proposed word embedding algorithms, the study of semantic similarity has progressed and advanced rapidly. However, many natural language processing tasks need sense level representation. To ad... 详细信息
来源: 评论
Flow-based sampling for multimodal and extended-mode distributions in lattice field theory
arXiv
收藏 引用
arXiv 2021年
作者: Hackett, Daniel C. Hsieh, Chung-Chun Pontula, Sahil Albergo, Michael S. Boyda, Denis Chen, Jiunn-Wei Chen, Kai-Feng Cranmer, Kyle Kanwar, Gurtej Shanahan, Phiala E. Center for Theoretical Physics Massachusetts Institute of Technology CambridgeMA02139 United States The NSF AI Institute for Artificial Intelligence and Fundamental Interactions United States Fermi National Accelerator Laboratory BataviaIL60510 United States Department of Physics Center for Theoretical Physics National Taiwan University Taipei106 Taiwan Department of Physics University of Maryland College ParkMD20742 United States Maryland Center for Fundamental Physics University of Maryland College ParkMD20742 United States Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA02139 United States Society of Fellows Harvard University CambridgeMA02138 United States Physics Division National Center for Theoretical Sciences Taipei10617 Taiwan Leung Center for Cosmology and Particle Astrophysics National Taiwan University Taipei106 Taiwan Department of Physics Data Science Institute University of Wisconsin–Madison MadisonWI53706 United States Higgs Centre for Theoretical Physics University of Edinburgh EdinburghEH9 3FD United Kingdom
Recent results have demonstrated that samplers constructed with flow-based generative models are a promising new approach for configuration generation in lattice field theory. In this paper, we present a set of traini... 详细信息
来源: 评论
Improving the improved training of wasserstein gans: A consistency term and its dual effect  6
Improving the improved training of wasserstein gans: A consi...
收藏 引用
6th International Conference on Learning Representations, ICLR 2018
作者: Wei, Xiang Gong, Boqing Liu, Zixia Lu, Wei Wang, Liqiang Department of Computer Science University of Central Florida OrlandoFL32816 United States School of Software Engineering Beijing Jiaotong University Beijing100044 China Tencent AI Lab BellevueWA98004 United States
Despite being impactful on a variety of problems and applications, the generative adversarial nets (GANs) are remarkably difficult to train. This issue is formally analyzed by Arjovsky & Bottou (2017), who also pr... 详细信息
来源: 评论
Memorizing all for implicit discourse relation recognition
arXiv
收藏 引用
arXiv 2019年
作者: Bai, Hongxiao Zhao, Hai Zhao, Junhan Department of Computer Science and Engineering Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence Ai Institute Shanghai Jiao Tong University Computer Graphics Technology Purdue University West LafayetteIN United States
Implicit discourse relation recognition is a challenging task due to the absence of the nec-essary informative clue from explicit connec-tives. The prediction of relations requires a deep understanding of the semantic... 详细信息
来源: 评论
Latent dirichlet allocation for internet price war
arXiv
收藏 引用
arXiv 2018年
作者: Li, Chenchen Yan, Xiang Deng, Xiaotie Qi, Yuan Chu, Wei Song, Le Qiao, Junlong He, Jianshan Xiong, Junwu AI Department Ant Financial Services Group Department of Computer Science Shanghai Jiao Tong University School of Electronics Engineering and Computer Science Peking University
Internet market makers are always facing intense competitive environment, where personalized price reductions or discounted coupons are provided for attracting more customers. Participants in such a price war scenario... 详细信息
来源: 评论
Reinforcement Learning for Uplift Modeling
arXiv
收藏 引用
arXiv 2018年
作者: Li, Chenchen Yan, Xiang Deng, Xiaotie Qi, Yuan Chu, Wei Song, Le Qiao, Junlong He, Jianshan Xiong, Junwu AI Department Ant Financial Services Group Department of Computer Science Shanghai Jiao Tong University School of Electronics Engineering and Computer Science Peking University
Uplift modeling aims to directly model the incremental impact of a treatment on an individual response. In this work, we address the problem from a new angle and reformulate it as a Markov Decision Process (MDP). We c... 详细信息
来源: 评论
Named entity recognition only from word embeddings
arXiv
收藏 引用
arXiv 2019年
作者: Luo, Ying Zhao, Hai Zhan, Junlang Department of Computer Science and Engineering Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence Ai Institute Shanghai Jiao Tong University Shanghai China
Deep neural network models have helped named entity (NE) recognition achieve amaz-ing performance without handcrafting features. However, existing systems require large amounts of human annotated training data. Ef-for... 详细信息
来源: 评论
Data analytics for fog computing by distributed online learning with asynchronous update
arXiv
收藏 引用
arXiv 2019年
作者: Li, Guangxia Zhao, Peilin Lu, Xiao Liu, Jia Shen, Yulong Shaanxi Key Laboratory of Network and System Security Xidian University China State Key Laboratory of Integrated Service Networks Xidian University China School of Computer Science and Technology Xidian University China Tencent AI Lab Tencent Inc. China Department of Electrical and Computer Engineering University of Alberta Canada
—Fog computing extends the cloud computing paradigm by allocating substantial portions of computations and services towards the edge of a network, and is, therefore, particularly suitable for large-scale, geo-distrib... 详细信息
来源: 评论