Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical...
详细信息
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical *** paper analyzes two fundamental failure cases in the baseline AD model and identifies key reasons that limit the recognition accuracy of existing approaches. Specifically, by Case-1, we found that the main reason detrimental to current AD methods is that the inputs to the recovery model contain a large number of detailed features to be recovered, which leads to the normal/abnormal area has not/has been recovered into its original state. By Case-2, we surprisingly found that the abnormal area that cannot be recognized in image-level representations can be easily recognized in the feature-level representation. Based on the above observations, we propose a novel recover-then-discriminate(ReDi) framework for *** takes a self-generated feature map(e.g., histogram of oriented gradients) and a selected prompted image as explicit input information to address the identified in Case-1. Additionally, a feature-level discriminative network is introduced to amplify abnormal differences between the recovered and input representations. Extensive experiments on two widely used yet challenging AD datasets demonstrate that ReDi achieves state-of-the-art recognition accuracy.
We consider a generic decentralized constrained optimization problem over static, directed communication networks, where each agent has exclusive access to only one convex, differentiable, local objective term and one...
详细信息
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection b...
详细信息
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection between cyberspace and physical processes results in the exposure of industrial production information to unprecedented security risks. It is imperative to develop suitable strategies to ensure cyber security while meeting basic performance *** the perspective of control engineering, this review presents the most up-to-date results for privacy-preserving filtering,control, and optimization in industrial cyber-physical systems. Fashionable privacy-preserving strategies and mainstream evaluation metrics are first presented in a systematic manner for performance evaluation and engineering *** discussion discloses the impact of typical filtering algorithms on filtering performance, specifically for privacy-preserving Kalman filtering. Then, the latest development of industrial control is systematically investigated from consensus control of multi-agent systems, platoon control of autonomous vehicles as well as hierarchical control of power systems. The focus thereafter is on the latest privacy-preserving optimization algorithms in the framework of consensus and their applications in distributed economic dispatch issues and energy management of networked power systems. In the end, several topics for potential future research are highlighted.
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
Utilizing the multi-dimensional (MD) space for constellation shaping has been proven to be an effective approach for achieving shaping gains. Despite there exists a variety of MD modulation formats tailored for specif...
详细信息
The Intelligent Internet of Things(IIoT) involves real-world things that communicate or interact with each other through networking technologies by collecting data from these “things” and using intelligent approache...
详细信息
The Intelligent Internet of Things(IIoT) involves real-world things that communicate or interact with each other through networking technologies by collecting data from these “things” and using intelligent approaches, such as Artificial Intelligence(AI) and machine learning, to make accurate decisions. Data science is the science of dealing with data and its relationships through intelligent approaches. Most state-of-the-art research focuses independently on either data science or IIoT, rather than exploring their integration. Therefore, to address the gap, this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT) system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics. The paper analyzes the data science or big data security and privacy features, including network architecture, data protection, and continuous monitoring of data, which face challenges in various IoT-based systems. Extensive insights into IoT data security, privacy, and challenges are visualized in the context of data science for IoT. In addition, this study reveals the current opportunities to enhance data science and IoT market development. The current gap and challenges faced in the integration of data science and IoT are comprehensively presented, followed by the future outlook and possible solutions.
With the popularity of the Internet of Vehicles(IoV), a large amount of data is being generated every day. How to securely share data between the IoV operator and various value-added service providers becomes one of t...
详细信息
With the popularity of the Internet of Vehicles(IoV), a large amount of data is being generated every day. How to securely share data between the IoV operator and various value-added service providers becomes one of the critical issues. Due to its flexible and efficient fine-grained access control feature, Ciphertext-Policy Attribute-Based Encryption(CP-ABE) is suitable for data sharing in IoV. However, there are many flaws in most existing CP-ABE schemes, such as attribute privacy leakage and key misuse. This paper proposes a Traceable and Revocable CP-ABE-based Data Sharing with Partially hidden policy for IoV(TRE-DSP). A partially hidden access structure is adopted to hide sensitive user attribute values, and attribute categories are sent along with the ciphertext to effectively avoid privacy exposure. In addition, key tracking and malicious user revocation are introduced with broadcast encryption to prevent key misuse. Since the main computation task is outsourced to the cloud, the burden of the user side is relatively low. Analysis of security and performance demonstrates that TRE-DSP is more secure and practical for data sharing in IoV.
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Software testing is a critical task that can be used to ensure the quality of the end product. Different types of applications process the input data with respect to a specific operation and its outcomes are generated...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
暂无评论