Inefficient task scheduling schemes compromise network performance and increase latency for delay intolerant tasks. Cybertwin based 6G services support data logging of operational queries for appropriate resource allo...
详细信息
The Internet of Things(loT)has grown rapidly due to artificial intelligence driven edge *** enabling many new functions,edge computing devices expand the vulnerability surface and have become the target of malware ***...
详细信息
The Internet of Things(loT)has grown rapidly due to artificial intelligence driven edge *** enabling many new functions,edge computing devices expand the vulnerability surface and have become the target of malware ***,attackers have used advanced techniques to evade defenses by transforming their malware into functionality-preserving *** systematically analyze such evasion attacks and conduct a large-scale empirical study in this paper to evaluate their impact on *** specifically,we focus on two forms of evasion attacks:obfuscation and adversarial *** the best of our knowledge,this paper is the first to investigate and contrast the two families of evasion attacks *** apply 10 obfuscation attacks and 9 adversarial attacks to 2870 malware *** obtained findings are as follows.(1)Commercial Off-The-Shelf(COTS)malware detectors are vulnerable to evasion attacks.(2)Adversarial attacks affect COTS malware detectors slightly more effectively than obfuscated malware examples.(3)Code similarity detection approaches can be affected by obfuscated examples and are barely affected by adversarial attacks.(4)These attacks can preserve the functionality of original malware examples.
Offensive messages on social media,have recently been frequently used to harass and criticize *** recent studies,many promising algorithms have been developed to identify offensive *** algorithms analyze text in a uni...
详细信息
Offensive messages on social media,have recently been frequently used to harass and criticize *** recent studies,many promising algorithms have been developed to identify offensive *** algorithms analyze text in a unidirectional manner,where a bidirectional method can maximize performance results and capture semantic and contextual information in *** addition,there are many separate models for identifying offensive texts based on monolin-gual and multilingual,but there are a few models that can detect both monolingual and multilingual-based offensive *** this study,a detection system has been developed for both monolingual and multilingual offensive texts by combining deep convolutional neural network and bidirectional encoder representations from transformers(Deep-BERT)to identify offensive posts on social media that are used to harass *** paper explores a variety of ways to deal with multilin-gualism,including collaborative multilingual and translation-based ***,the Deep-BERT is tested on the Bengali and English datasets,including the different bidirectional encoder representations from transformers(BERT)pre-trained word-embedding techniques,and found that the proposed Deep-BERT’s efficacy outperformed all existing offensive text classification algorithms reaching an accuracy of 91.83%.The proposed model is a state-of-the-art model that can classify both monolingual-based and multilingual-based offensive texts.
An enormous amount of applications that are available for download permits users to enhance the functionality of the devices with brand-new features, which is a significant factor in the growing popularity of smartpho...
详细信息
In understanding brain functioning by Electroencephalography (EEG), it is essential to be able to not only identify more active brain areas but also understand connectivity among different areas. The functional and ef...
详细信息
Deep learning methods have played a prominent role in the development of computer visualization in recent years. Hyperspectral imaging (HSI) is a popular analytical technique based on spectroscopy and visible imaging ...
详细信息
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has ex...
详细信息
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has expanded the potential targets that hackers might *** adequate safeguards,data transmitted on the internet is significantly more susceptible to unauthorized access,theft,or *** identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious *** research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks(RNN)integrated with Long Short-Term Memory(LSTM)*** proposed model can identify various types of cyberattacks,including conventional and distinctive *** networks,a specific kind of feedforward neural networks,possess an intrinsic memory *** Neural Networks(RNNs)incorporating Long Short-Term Memory(LSTM)mechanisms have demonstrated greater capabilities in retaining and utilizing data dependencies over extended *** such as data types,training duration,accuracy,number of false positives,and number of false negatives are among the parameters employed to assess the effectiveness of these models in identifying both common and unusual *** are utilised in conjunction with LSTM to support human analysts in identifying possible intrusion events,hence enhancing their decision-making capabilities.A potential solution to address the limitations of Shallow learning is the introduction of the Eccentric Intrusion Detection *** model utilises Recurrent Neural Networks,specifically exploiting LSTM *** proposed model achieves detection accuracy(99.5%),generalisation(99%),and false-positive rate(0.72%),the parameters findings reveal that it is superior to state-of-the-art techniques.
The increasing number of electronic transactions on the Internet has given rise to the design of recommendation systems. The main objective of these systems is to give recommendations to the users about the items (i.e...
详细信息
Existing deep learning-based point cloud denoising methods are generally trained in a supervised manner that requires clean data as ground-truth ***,in practice,it is not always feasible to obtain clean point *** this...
详细信息
Existing deep learning-based point cloud denoising methods are generally trained in a supervised manner that requires clean data as ground-truth ***,in practice,it is not always feasible to obtain clean point *** this paper,we introduce a novel unsupervised point cloud denoising method that eliminates the need to use clean point clouds as groundtruth labels during *** demonstrate that it is feasible for neural networks to only take noisy point clouds as input,and learn to approximate and restore their clean *** particular,we generate two noise levels for the original point clouds,requiring the second noise level to be twice the amount of the first noise *** this,we can deduce the relationship between the displacement information that recovers the clean surfaces across the two levels of noise,and thus learn the displacement of each noisy point in order to recover the corresponding clean *** experiments demonstrate that our method achieves outstanding denoising results across various datasets with synthetic and real-world noise,obtaining better performance than previous unsupervised methods and competitive performance to current supervised methods.
The rapid evolution of wireless technologies and the growing complexity of network infrastructures necessitate a paradigm shift in how communication networks are designed,configured,and managed. Recent advancements in...
详细信息
The rapid evolution of wireless technologies and the growing complexity of network infrastructures necessitate a paradigm shift in how communication networks are designed,configured,and managed. Recent advancements in large language models (LLMs) have sparked interest in their potential to revolutionize wireless communication systems. However, existing studies on LLMs for wireless systems are limited to a direct application for telecom language understanding. To empower LLMs with knowledge and expertise in the wireless domain, this paper proposes WirelessLLM, a comprehensive framework for adapting and enhancing LLMs to address the unique challenges and requirements of wireless communication networks. We first identify three foundational principles that underpin WirelessLLM:knowledge alignment, knowledge fusion, and knowledge evolution. Then,we investigate the enabling technologies to build WirelessLLM, including prompt engineering, retrieval augmented generation, tool usage, multi-modal pre-training, and domain-specific fine-tuning. Moreover, we present three case studies to demonstrate the practical applicability and benefits of WirelessLLM for solving typical problems in wireless networks. Finally, we conclude this paper by highlighting key challenges and outlining potential avenues for future research.
暂无评论