Cancer remains a leading cause of mortality worldwide, with early detection and accurate diagnosis critical to improving patient outcomes. While computer-aided diagnosis systems powered by deep learning have shown con...
详细信息
Sentiment analysis plays an important role in distilling and clarifying content from movie reviews,aiding the audience in understanding universal views towards the ***,the abundance of reviews and the risk of encounte...
详细信息
Sentiment analysis plays an important role in distilling and clarifying content from movie reviews,aiding the audience in understanding universal views towards the ***,the abundance of reviews and the risk of encountering spoilers pose challenges for efcient sentiment analysis,particularly in Arabic *** study proposed a Stochastic Gradient Descent(SGD)machine learning(ML)model tailored for sentiment analysis in Arabic and English movie *** allows for fexible model complexity adjustments,which can adapt well to the Involvement of Arabic language *** adaptability ensures that the model can capture the nuances and specifc local patterns of Arabic text,leading to better *** distinct language datasets were utilized,and extensive pre-processing steps were employed to optimize the datasets for *** proposed SGD model,designed to accommodate the nuances of each language,aims to surpass existing models in terms of accuracy and *** SGD model achieves an accuracy of 84.89 on the Arabic dataset and 87.44 on the English dataset,making it the top-performing model in terms of accuracy on both *** indicates that the SGD model consistently demonstrates high accuracy levels across Arabic and English *** study helps deepen the understanding of sentiments across various linguistic *** many studies that focus solely on movie reviews,the Arabic dataset utilized here includes hotel reviews,ofering a broader perspective.
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, faci...
详细信息
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, facing challenges like task interference, limited adaptability, and difficulty in capturing nuanced linguistic expressions indicative of various conditions. In response to these challenges, our research presents three novel models employing multi-task learning (MTL) to understand mental health behaviors comprehensively. These models encompass soft-parameter sharing-based long short-term memory with attention mechanism (SPS-LSTM-AM), SPS-based bidirectional gated neural networks with self-head attention mechanism (SPS-BiGRU-SAM), and SPS-based bidirectional neural network with multi-head attention mechanism (SPS-BNN-MHAM). Our models address diverse tasks, including detecting disorders such as bipolar disorder, insomnia, obsessive-compulsive disorder, and panic in psychiatric texts, alongside classifying suicide or non-suicide-related texts on social media as auxiliary tasks. Emotion detection in suicide notes, covering emotions of abuse, blame, and sorrow, serves as the main task. We observe significant performance enhancement in the primary task by incorporating auxiliary tasks. Advanced encoder-building techniques, including auto-regressive-based permutation and enhanced permutation language modeling, are recommended for effectively capturing mental health contexts’ subtleties, semantic nuances, and syntactic structures. We present the shared feature extractor called shared auto-regressive for language modeling (S-ARLM) to capture high-level representations that are useful across tasks. Additionally, we recommend soft-parameter sharing (SPS) subtypes-fully sharing, partial sharing, and independent layer-to minimize tight coupling and enhance adaptability. Our models exhibit outstanding performance across various datasets, achieving accuracies of 96.9%, 97.
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of u...
详细信息
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of users, typically operate in a fully server-based manner, requiring on-device users to upload their behavioral data, including fine-grained spatiotemporal contexts, to the server, which has sparked public concern regarding privacy. Consequently, user devices only upload coarse-grained spatiotemporal contexts for user privacy protection. However, previous research mostly focuses on modeling fine-grained spatiotemporal contexts using knowledge graph convolutional models, which are not applicable to coarse-grained spatiotemporal contexts in privacy-constrained recommender systems. In this paper, we investigate privacy-preserving recommendation by leveraging coarse-grained spatiotemporal contexts. We propose the coarse-grained spatiotemporal knowledge graph for privacy-preserving recommendation(CSKG), which explicitly models spatiotemporal co-occurrences using common-sense knowledge from coarse-grained contexts. Specifically, we begin by constructing a spatiotemporal knowledge graph tailored to coarse-grained spatiotemporal contexts. Then we employ a learnable metagraph network that integrates common-sense information to filter and extract co-occurrences. CSKG evaluates the impact of coarsegrained spatiotemporal contexts on user behavior through the use of a knowledge graph convolutional network. Finally, we introduce joint learning to effectively learn representations. By conducting experiments on two real large-scale datasets,we achieve an average improvement of about 11.0% on two ranking metrics. The results clearly demonstrate that CSKG outperforms state-of-the-art baselines.
Synthetic data generation via generative artificial intelligence (GenAI) is essential for enhancing cybersecurity and safeguarding privacy in the Internet of Medical Things (IoMT) and healthcare. We introduce multifea...
详细信息
Traditional multi-secret sharing (MSS) schemes generate random shares to secure secrets, but their noisy appearance can raise suspicion. To address this, we present an advanced (n+1,n+1) MSS scheme that generates mean...
详细信息
Automated detection of plant diseases is crucial as it simplifies the task of monitoring large farms and identifies diseases at their early stages to mitigate further plant degradation. Besides the decline in plant he...
详细信息
The rapid deployment of Large Language Models (LLMs) requires careful consideration of their effect on cybersecurity. Our work aims to improve the selection process of LLMs that are suitable for facilitating secure co...
详细信息
In the context of security systems,adequate signal coverage is paramount for the communication between security personnel and the accurate positioning of *** studies focus on optimizing base station deployment under t...
详细信息
In the context of security systems,adequate signal coverage is paramount for the communication between security personnel and the accurate positioning of *** studies focus on optimizing base station deployment under the assumption of static obstacles,aiming to maximize the perception coverage of wireless RF(Radio Frequency)signals and reduce positioning blind ***,in practical security systems,obstacles are subject to change,necessitating the consideration of base station deployment in dynamic ***,research in this area still needs to be *** paper proposes a Dynamic Indoor Environment Beacon Deployment Algorithm(DIE-BDA)to address this *** algorithm considers the dynamic alterations in obstacle locations within the designated *** determines the requisite number of base stations,the requisite time,and the area’s practical and overall signal coverage *** experimental results demonstrate that the algorithm can calculate the deployment strategy in 0.12 s following a change in obstacle *** results show that the algorithm in this paper requires 0.12 s to compute the deployment strategy after the positions of obstacles *** 13 base stations,it achieves an effective coverage rate of 93.5%and an overall coverage rate of 97.75%.The algorithm can rapidly compute a revised deployment strategy in response to changes in obstacle positions within security systems,thereby ensuring the efficacy of signal coverage.
Airplanes play a critical role in global transportation, ensuring the efficient movement of people and goods. Although generally safe, aviation systems occasionally encounter incidents and accidents that underscore th...
详细信息
暂无评论