In recent years, the interest in applying machine learning (ML) and deep learning (DL) has been increasing due to their ability to learn to predict and find structure in data. The most common approach of ML and DL is ...
详细信息
Bat Algorithm (BA) is a nature-inspired metaheuristic search algorithm designed to efficiently explore complex problem spaces and find near-optimal solutions. The algorithm is inspired by the echolocation behavior of ...
详细信息
Learning network dynamics from the empirical structure and spatio-temporal observation data is crucial to revealing the interaction mechanisms of complex networks in a wide range of domains. However,most existing meth...
详细信息
Learning network dynamics from the empirical structure and spatio-temporal observation data is crucial to revealing the interaction mechanisms of complex networks in a wide range of domains. However,most existing methods only aim at learning network dynamic behaviors generated by a specific ordinary differential equation instance, resulting in ineffectiveness for new ones, and generally require dense *** observed data, especially from network emerging dynamics, are usually difficult to obtain, which brings trouble to model learning. Therefore, learning accurate network dynamics with sparse, irregularly-sampled,partial, and noisy observations remains a fundamental challenge. We introduce a new concept of the stochastic skeleton and its neural implementation, i.e., neural ODE processes for network dynamics(NDP4ND), a new class of stochastic processes governed by stochastic data-adaptive network dynamics, to overcome the challenge and learn continuous network dynamics from scarce observations. Intensive experiments conducted on various network dynamics in ecological population evolution, phototaxis movement, brain activity, epidemic spreading, and real-world empirical systems, demonstrate that the proposed method has excellent data adaptability and computational efficiency, and can adapt to unseen network emerging dynamics, producing accurate interpolation and extrapolation with reducing the ratio of required observation data to only about 6% and improving the learning speed for new dynamics by three orders of magnitude.
Artificial Intelligence, including machine learning and deep convolutional neural networks (DCNNs), relies on complex algorithms and neural networks to process and analyze data. DCNNs for visual recognition often requ...
详细信息
In the field of medical images,pixel-level labels are time-consuming and expensive to acquire,while image-level labels are relatively easier to ***,it makes sense to learn more information(knowledge)from a small numbe...
详细信息
In the field of medical images,pixel-level labels are time-consuming and expensive to acquire,while image-level labels are relatively easier to ***,it makes sense to learn more information(knowledge)from a small number of hard-to-get pixel-level annotated images to apply to different tasks to maximize their usefulness and save time and training *** this paper,using Pixel-Level Labeled Images forMulti-Task Learning(PLDMLT),we focus on grading the severity of fundus images for Diabetic Retinopathy(DR).This is because,for the segmentation task,there is a finely labeled mask,while the severity grading task is without classification *** this end,we propose a two-stage multi-label learning weakly supervised algorithm,which generates initial classification pseudo labels in the first stage and visualizes heat maps at all levels of severity using Grad-Cam to further provide medical interpretability for the classification task.A multitask model framework with U-net as the baseline is proposed in the second stage.A label update network is designed to alleviate the gradient balance between the classification and segmentation *** experimental results show that our PLDMLTmethod significantly outperforms other stateof-the-art methods in DR segmentation on two public datasets,achieving up to 98.897%segmentation *** addition,our method achieves comparable competitiveness with single-task fully supervised learning in the DR severity grading task.
The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla *** today’s technology-driven era,where precise tools f...
详细信息
The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla *** today’s technology-driven era,where precise tools for reading handwritten text are essential,this study focuses on leveraging deep learning to understand the intricacies of Bangla *** existing dearth of dedicated datasets has impeded the progress of Bangla handwritten city name recognition systems,particularly in critical areas such as postal automation and document ***,no prior research has specifically targeted the unique needs of Bangla handwritten city name *** bridge this gap,the study collects real-world images from diverse sources to construct a comprehensive dataset for Bangla Hand Written City name *** emphasis on practical data for system training enhances *** research further conducts a comparative analysis,pitting state-of-the-art(SOTA)deep learning models,including EfficientNetB0,VGG16,ResNet50,DenseNet201,InceptionV3,and Xception,against a custom Convolutional Neural Networks(CNN)model named“Our CNN.”The results showcase the superior performance of“Our CNN,”with a test accuracy of 99.97% and an outstanding F1 score of 99.95%.These metrics underscore its potential for automating city name recognition,particularly in postal *** study concludes by highlighting the significance of meticulous dataset curation and the promising outlook for custom CNN *** encourages future research avenues,including dataset expansion,algorithm refinement,exploration of recurrent neural networks and attention mechanisms,real-world deployment of models,and extension to other regional languages and *** recommendations offer exciting possibilities for advancing the field of handwritten recognition technology and hold practical implications for enhancing global postal services.
Stroke is a leading cause of global population mortality and disability, imposing burdens on patients and caregivers, and significantly affecting the quality of life of patients. Therefore, in this study, we aimed to ...
详细信息
The skin acts as an important barrier between the body and the external environment, playing a vital role as an organ. The application of deep learning in the medical field to solve various health problems has generat...
详细信息
Roads are an important part of transporting goods and products from one place to another. In developing countries, the main challenge is to maintain road conditions regularly. Roads can deteriorate from time to time. ...
详细信息
In the era of digital transformation and increasing concerns regarding data privacy, the concept of Self-Sovereign Identity (SSI) has attained substantial recognization. SSI offers individuals greater control over the...
详细信息
暂无评论