Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are v...
详细信息
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are vital in facilitating end-user communication ***,the security of Android systems has been challenged by the sensitive data involved,leading to vulnerabilities in mobile devices used in 5G *** vulnerabilities expose mobile devices to cyber-attacks,primarily resulting from security ***-permission apps in Android can exploit these channels to access sensitive information,including user identities,login credentials,and geolocation *** such attack leverages"zero-permission"sensors like accelerometers and gyroscopes,enabling attackers to gather information about the smartphone's *** underscores the importance of fortifying mobile devices against potential future *** research focuses on a new recurrent neural network prediction model,which has proved highly effective for detecting side-channel attacks in mobile devices in 5G *** conducted state-of-the-art comparative studies to validate our experimental *** results demonstrate that even a small amount of training data can accurately recognize 37.5%of previously unseen user-typed ***,our tap detection mechanism achieves a 92%accuracy rate,a crucial factor for text *** findings have significant practical implications,as they reinforce mobile device security in 5G networks,enhancing user privacy,and data protection.
This paper presents a research study on the use of Convolutional Neural Network (CNN), ResNet50, InceptionV3, EfficientNetB0 and NASNetMobile models to efficiently detect brain tumors in order to reduce the time requi...
详细信息
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i...
详细信息
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd datas
Severe rainfall has seriously threatened human health and survival. Natural catastrophes such as floods, droughts, and many other natural disasters are caused by heavy rains, which people worldwide have to deal with t...
详细信息
Pervasive Computing has become more personal with the widespread adoption of the Internet of Things(IoT)in our day-to-day *** emerging domain that encompasses devices,sensors,storage,and computing of personal use and ...
详细信息
Pervasive Computing has become more personal with the widespread adoption of the Internet of Things(IoT)in our day-to-day *** emerging domain that encompasses devices,sensors,storage,and computing of personal use and surroundings leads to Personal IoT(PIoT).PIoT offers users high levels of personalization,automation,and *** proliferation of PIoT technology has extended into society,social engagement,and the interconnectivity of PIoT objects,resulting in the emergence of the Social Internet of Things(SIoT).The combination of PIoT and SIoT has spurred the need for autonomous learning,comprehension,and understanding of both the physical and social *** research on PIoT is dedicated to enabling seamless communication among devices,striking a balance between observation,sensing,and perceiving the extended physical and social environment,and facilitating information ***,the virtualization of independent learning from the social environment has given rise to Artificial Social Intelligence(ASI)in PIoT ***,autonomous data communication between different nodes within a social setup presents various resource management challenges that require careful *** paper provides a comprehensive review of the evolving domains of PIoT,SIoT,and ***,the paper offers insightful modeling and a case study exploring the role of PIoT in post-COVID *** study contributes to a deeper understanding of the intricacies of PIoT and its various dimensions,paving the way for further advancements in this transformative field.
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks ofte...
详细信息
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks often require multiple instructions and prolonged monitoring, which can be time-consuming and demanding for users. Despite this, there is limited research on enabling robots to autonomously generate tasks based on real-life scenarios. Advanced intelligence necessitates robots to autonomously observe and analyze their environment and then generate tasks autonomously to fulfill human requirements without explicit commands. To address this gap, we propose the autonomous generation of navigation tasks using natural language dialogues. Specifically, a robot autonomously generates tasks by analyzing dialogues involving multiple persons in a real office environment to facilitate the completion of item transportation between various *** propose the leveraging of a large language model(LLM) through chain-of-thought prompting to generate a navigation sequence for a robot from dialogues. We also construct a benchmark dataset consisting of 625 multiperson dialogues using the generation capability of LLMs. Evaluation results and real-world experiments in an office building demonstrate the effectiveness of the proposed method.
The flow shop scheduling problem is important for the manufacturing *** flow shop scheduling can bring great benefits to the ***,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learni...
详细信息
The flow shop scheduling problem is important for the manufacturing *** flow shop scheduling can bring great benefits to the ***,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted *** work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned ***,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are *** to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local *** of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during ***,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed *** experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random *** verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving *** Friedman test is executed on the results by five *** is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness.
Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing *** the popularity of ML techniques,only a...
详细信息
Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing *** the popularity of ML techniques,only a few research studies have focused on the application of ML especially supervised learning techniques in Requirement engineering(RE)activities to solve the problems that occur in RE *** authors focus on the systematic mapping of past work to investigate those studies that focused on the application of supervised learning techniques in RE activities between the period of 2002–*** authors aim to investigate the research trends,main RE activities,ML algorithms,and data sources that were studied during this ***-five research studies were selected based on our exclusion and inclusion *** results show that the scientific community used 57 *** those algorithms,researchers mostly used the five following ML algorithms in RE activities:Decision Tree,Support Vector Machine,Naïve Bayes,K-nearest neighbour Classifier,and Random *** results show that researchers used these algorithms in eight major RE *** activities are requirements analysis,failure prediction,effort estimation,quality,traceability,business rules identification,content classification,and detection of problems in requirements written in natural *** selected research studies used 32 private and 41 public data *** most popular data sources that were detected in selected studies are the Metric Data Programme from NASA,Predictor Models in Software engineering,and iTrust Electronic Health Care System.
Chronic Kidney Cancer (CKC) is a disease that hindrances the blood-filtering mechanism of the kidney and is increasing at an alarming rate in the recent few years. As CKC does not show any earlier symptoms, the earlie...
详细信息
Fake news, Fake certification, and Plagiarism are the most common issues arising these days. During this COVID-19 situation, there are a lot of rumors and fake news spreading and some of us are using fake certificatio...
详细信息
暂无评论