This multi-center randomized controlled trial explores the therapeutic benefits of Indian classical music, specifically “Raga Therapy,” for managing diabetes, thyroid disorders, and hypertension—prevalent global he...
详细信息
Deep reinforcement learning(DRL) has demonstrated significant potential in industrial manufacturing domains such as workshop scheduling and energy system ***, due to the model's inherent uncertainty, rigorous vali...
详细信息
Deep reinforcement learning(DRL) has demonstrated significant potential in industrial manufacturing domains such as workshop scheduling and energy system ***, due to the model's inherent uncertainty, rigorous validation is requisite for its application in real-world tasks. Specific tests may reveal inadequacies in the performance of pre-trained DRL models, while the “black-box” nature of DRL poses a challenge for testing model behavior. We propose a novel performance improvement framework based on probabilistic automata,which aims to proactively identify and correct critical vulnerabilities of DRL systems, so that the performance of DRL models in real tasks can be improved with minimal model ***, a probabilistic automaton is constructed from the historical trajectory of the DRL system by abstracting the state to generate probabilistic decision-making units(PDMUs), and a reverse breadth-first search(BFS) method is used to identify the key PDMU-action pairs that have the greatest impact on adverse outcomes. This process relies only on the state-action sequence and final result of each trajectory. Then, under the key PDMU, we search for the new action that has the greatest impact on favorable results. Finally, the key PDMU, undesirable action and new action are encapsulated as monitors to guide the DRL system to obtain more favorable results through real-time monitoring and correction mechanisms. Evaluations in two standard reinforcement learning environments and three actual job scheduling scenarios confirmed the effectiveness of the method, providing certain guarantees for the deployment of DRL models in real-world applications.
With rapidly expanding cloud-enabled big data environments, there is an imperative need for efficient data-sharing mechanisms that are multidimensional and balance both speed and security. In this connection, high-spe...
详细信息
Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous *** information in car-mounted videos can a...
详细信息
Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous *** information in car-mounted videos can assist drivers in making ***,Car-mounted video text images pose challenges such as complex backgrounds,small fonts,and the need for real-time *** proposed a robust Car-mounted Video Text Detector(CVTD).It is a lightweight text detection model based on ResNet18 for feature extraction,capable of detecting text in arbitrary *** model efficiently extracted global text positions through the Coordinate Attention Threshold Activation(CATA)and enhanced the representation capability through stacking two Feature Pyramid Enhancement Fusion Modules(FPEFM),strengthening feature representation,and integrating text local features and global position information,reinforcing the representation capability of the CVTD *** enhanced feature maps,when acted upon by Text Activation Maps(TAM),effectively distinguished text foreground from non-text ***,we collected and annotated a dataset containing 2200 images of Car-mounted Video Text(CVT)under various road conditions for training and evaluating our model’s *** further tested our model on four other challenging public natural scene text detection benchmark datasets,demonstrating its strong generalization ability and real-time detection *** model holds potential for practical applications in real-world scenarios.
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, faci...
详细信息
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, facing challenges like task interference, limited adaptability, and difficulty in capturing nuanced linguistic expressions indicative of various conditions. In response to these challenges, our research presents three novel models employing multi-task learning (MTL) to understand mental health behaviors comprehensively. These models encompass soft-parameter sharing-based long short-term memory with attention mechanism (SPS-LSTM-AM), SPS-based bidirectional gated neural networks with self-head attention mechanism (SPS-BiGRU-SAM), and SPS-based bidirectional neural network with multi-head attention mechanism (SPS-BNN-MHAM). Our models address diverse tasks, including detecting disorders such as bipolar disorder, insomnia, obsessive-compulsive disorder, and panic in psychiatric texts, alongside classifying suicide or non-suicide-related texts on social media as auxiliary tasks. Emotion detection in suicide notes, covering emotions of abuse, blame, and sorrow, serves as the main task. We observe significant performance enhancement in the primary task by incorporating auxiliary tasks. Advanced encoder-building techniques, including auto-regressive-based permutation and enhanced permutation language modeling, are recommended for effectively capturing mental health contexts’ subtleties, semantic nuances, and syntactic structures. We present the shared feature extractor called shared auto-regressive for language modeling (S-ARLM) to capture high-level representations that are useful across tasks. Additionally, we recommend soft-parameter sharing (SPS) subtypes-fully sharing, partial sharing, and independent layer-to minimize tight coupling and enhance adaptability. Our models exhibit outstanding performance across various datasets, achieving accuracies of 96.9%, 97.
Image processing,agricultural production,andfield monitoring are essential studies in the researchfi*** diseases have an impact on agricultural production and *** disease detection at a preliminary phase reduces economi...
详细信息
Image processing,agricultural production,andfield monitoring are essential studies in the researchfi*** diseases have an impact on agricultural production and *** disease detection at a preliminary phase reduces economic losses and improves the quality of *** identifying the agricultural pests is usually evident in plants;also,it takes more time and is an expensive technique.A drone system has been developed to gather photographs over enormous regions such as farm areas and *** atmosphere generates vast amounts of data as it is monitored closely;the evaluation of this big data would increase the production of agricultural *** paper aims to identify pests in mango trees such as hoppers,mealybugs,inflorescence midges,fruitflies,and stem *** of the massive volumes of large-scale high-dimensional big data collected,it is necessary to reduce the dimensionality of the input for classify-ing *** community-based cumulative algorithm was used to classify the pests in the existing *** proposed method uses the Entropy-ELM method with Whale Optimization to improve the classification in detecting pests in *** Entropy-ELM method with the Whale Optimization Algorithm(WOA)is used for feature selection,enhancing mango pests’classification *** Vector Machines(SVMs)are especially effective for classifying while users get var-ious classes in which they are *** are created as suitable classifiers to categorize any dataset in Big Data *** proposed Entropy-ELM-WOA is more capable compared to the existing systems.
In recent years,the growth of female employees in the commercial market and industries has *** a result,some people think travelling to distant and isolated locations during odd hours generates new threats to women’s...
详细信息
In recent years,the growth of female employees in the commercial market and industries has *** a result,some people think travelling to distant and isolated locations during odd hours generates new threats to women’s *** exponential increase in assaults and attacks on women,on the other hand,is posing a threat to women’s growth,development,and *** the time of the attack,it appears the women were immobilized and needed immediate *** self-defense isn’t sufficient against abuse;a new technological solution is desired and can be used as quickly as hitting a switch or *** proposed Women Safety Gadget(WSG)aims to design a wearable safety device model based on Internet-of-Things(IoT)and Cloud *** is designed in three layers,namely layer-1,having an android app;layer-2,with messaging and location tracking system;and layer-3,which updates information in the cloud *** can detect an unsafe condition by the pressure sensor of the finger on the artificial nail,consequently diffuses a pepper spray,and automatically notifies the saved closest contacts and police station through messaging and location *** has a response time of 1000 ms once the nail is pressed;the average time for pulse rate measure is 0.475 s,and diffusing the pepper spray is 0.2–0.5 *** average activation time is 2.079 s.
Effective management of electricity consumption (EC) in smart buildings (SBs) is crucial for optimizing operational efficiency, cost savings, and ensuring sustainable resource utilization. Accurate EC prediction enabl...
详细信息
The objective of this research is to examine the use of feature selection and classification methods for distinguishing different types of brain *** brain tumor is characterized by an anomalous proliferation of brain c...
详细信息
The objective of this research is to examine the use of feature selection and classification methods for distinguishing different types of brain *** brain tumor is characterized by an anomalous proliferation of brain cells that can either be benign or *** tumors are misdiagnosed due to the variabil-ity and complexity of lesions,which reduces the survival rate in ***-sis of brain tumors via computer vision algorithms is a challenging *** and classification of brain tumors are currently one of the most essential surgical and pharmaceutical *** brain tumor identi-fication techniques require manual segmentation or handcrafted feature extraction that is error-prone and *** the proposed research work is mainly focused on medical image processing,which takes Magnetic Resonance Imaging(MRI)images as input and performs preprocessing,segmentation,fea-ture extraction,feature selection,similarity measurement,and classification steps for identifying brain ***,the medianfilter is practically applied to the input image to reduce the *** graph-cut segmentation technique is used to segment the tumor *** texture feature is extracted from the output of the segmented *** extracted feature is selected by using the Ant Colony Opti-mization(ACO)algorithm to improve the performance of the classifi*** prob-abilistic approach is used to solve computing *** Euclidean distance is used to calculate the degree of similarity for each extracted *** selected feature value is given to the Relevance Vector Machine(RVM)which is a multi-class classification ***,the tumor is classified as abnormal or *** experimental result reveals that the proposed RVM technique gives a better accuracy range of 98.87%when compared to the traditional Support Vector Machine(SVM)technique.
Retrieving legal texts is an important step for building a question answering system on law domain, which needs relevant articles to answer a query. Remarkable research has been done on legal information retrieval. Ho...
详细信息
暂无评论