Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality *** and treating ABE promptly is important to prevent further complications and long-term *** studie...
详细信息
Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality *** and treating ABE promptly is important to prevent further complications and long-term *** studies have explored ABE ***,they often face limitations in classification due to reliance on a single modality of Magnetic Resonance Imaging(MRI).To tackle this problem,the authors propose a Tri-M2MT model for precise ABE detection by using tri-modality MRI *** scans include T1-weighted imaging(T1WI),T2-weighted imaging(T2WI),and apparent diffusion coefficient maps to get indepth ***,the tri-modality MRI scans are collected and preprocessesed by using an Advanced Gaussian Filter for noise reduction and Z-score normalisation for data *** Advanced Capsule Network was utilised to extract relevant features by using Snake Optimization Algorithm to select optimal features based on feature correlation with the aim of minimising complexity and enhancing detection ***,a multi-transformer approach was used for feature fusion and identify feature correlations ***,accurate ABE diagnosis is achieved through the utilisation of a SoftMax *** performance of the proposed Tri-M2MT model is evaluated across various metrics,including accuracy,specificity,sensitivity,F1-score,and ROC curve analysis,and the proposed methodology provides better performance compared to existing methodologies.
Data collection using mobile sink(s) has proven to reduce energy consumption and enhance the network lifetime of wireless sensor networks. Generally speaking, a mobile sink (MS) traverses the network region, sojournin...
详细信息
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical...
详细信息
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical *** paper analyzes two fundamental failure cases in the baseline AD model and identifies key reasons that limit the recognition accuracy of existing approaches. Specifically, by Case-1, we found that the main reason detrimental to current AD methods is that the inputs to the recovery model contain a large number of detailed features to be recovered, which leads to the normal/abnormal area has not/has been recovered into its original state. By Case-2, we surprisingly found that the abnormal area that cannot be recognized in image-level representations can be easily recognized in the feature-level representation. Based on the above observations, we propose a novel recover-then-discriminate(ReDi) framework for *** takes a self-generated feature map(e.g., histogram of oriented gradients) and a selected prompted image as explicit input information to address the identified in Case-1. Additionally, a feature-level discriminative network is introduced to amplify abnormal differences between the recovered and input representations. Extensive experiments on two widely used yet challenging AD datasets demonstrate that ReDi achieves state-of-the-art recognition accuracy.
Advancements in smart applications highlight the need for increased processing and storage capacity at Smart Devices (SDs). To tackle this, Edge computing (EC) is enabled to offload SD workloads to distant edge server...
详细信息
In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mo...
详细信息
In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mobileapps. The use of these apps eases our daily lives, and all customers who need any type of service can accessit easily, comfortably, and efficiently through mobile apps. Particularly, Saudi Arabia greatly depends on digitalservices to assist people and visitors. Such mobile devices are used in organizing daily work schedules and services,particularly during two large occasions, Umrah and Hajj. However, pilgrims encounter mobile app issues such asslowness, conflict, unreliability, or user-unfriendliness. Pilgrims comment on these issues on mobile app platformsthrough reviews of their experiences with these digital services. Scholars have made several attempts to solve suchmobile issues by reporting bugs or non-functional requirements by utilizing user ***, solving suchissues is a great challenge, and the issues still exist. Therefore, this study aims to propose a hybrid deep learningmodel to classify and predict mobile app software issues encountered by millions of pilgrims during the Hajj andUmrah periods from the user perspective. Firstly, a dataset was constructed using user-generated comments fromrelevant mobile apps using natural language processing methods, including information extraction, the annotationprocess, and pre-processing steps, considering a multi-class classification problem. Then, several experimentswere conducted using common machine learning classifiers, Artificial Neural Networks (ANN), Long Short-TermMemory (LSTM), and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) architectures, toexamine the performance of the proposed model. Results show 96% in F1-score and accuracy, and the proposedmodel outperformed the mentioned models.
In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation *** this paper,we aim to reduce the annotation cost of crowd datasets,a...
详细信息
In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation *** this paper,we aim to reduce the annotation cost of crowd datasets,and propose a crowd density estimation method based on weakly-supervised learning,in the absence of crowd position supervision information,which directly reduces the number of crowds by using the number of pedestrians in the image as the supervised *** this purpose,we design a new training method,which exploits the correlation between global and local image features by incremental learning to train the ***,we design a parent-child network(PC-Net)focusing on the global and local image respectively,and propose a linear feature calibration structure to train the PC-Net simultaneously,and the child network learns feature transfer factors and feature bias weights,and uses the transfer factors and bias weights to linearly feature calibrate the features extracted from the Parent network,to improve the convergence of the network by using local features hidden in the crowd *** addition,we use the pyramid vision transformer as the backbone of the PC-Net to extract crowd features at different levels,and design a global-local feature loss function(L2).We combine it with a crowd counting loss(LC)to enhance the sensitivity of the network to crowd features during the training process,which effectively improves the accuracy of crowd density *** experimental results show that the PC-Net significantly reduces the gap between fullysupervised and weakly-supervised crowd density estimation,and outperforms the comparison methods on five datasets of Shanghai Tech Part A,ShanghaiTech Part B,UCF_CC_50,UCF_QNRF and JHU-CROWD++.
In this paper, we delve into the transformative landscape of education amidst the disruptive advances of generative AI (GenAI), characterized by an unprecedented capacity to generate new information with tools such as...
详细信息
The rapid advancement and proliferation of Cyber-Physical Systems (CPS) have led to an exponential increase in the volume of data generated continuously. Efficient classification of this streaming data is crucial for ...
详细信息
Reduplication is a highly productive process in Bengali word formation, with significant implications for various natural language processing (NLP) applications, such as parts-of-speech tagging and sentiment analysis....
详细信息
Security and privacy are major concerns in this modern world. Medical documentation of patient data needs to be transmitted between hospitals for medical experts opinions on critical cases which may cause threats to t...
详细信息
Security and privacy are major concerns in this modern world. Medical documentation of patient data needs to be transmitted between hospitals for medical experts opinions on critical cases which may cause threats to the data. Nowadays most of the hospitals use electronic methods to store and transmit data with basic security measures, but these methods are still vulnerable. There is no perfect solution that solves the security problems in any industry, especially healthcare. So, to cope with the arising need to increase the security of the data from being manipulated the proposed method uses a hybrid image encryption technique to hide the data in an image so it becomes difficult to sense the presence of data in the image while transmission. It combines Least Significant Bit (LSB) Algorithm using Arithmetic Division Operation along with Canny edge detection to embed the patient data in medical images. The image is subsequently encrypted using keys of six different chaotic maps sequentially to increase the integrity and robustness of the system. Finally, an encrypted image is converted into DNA sequence using DNA encoding rule to improve reliability. The experimentation is done on the Chest XRay image, Knee Magnetic Resonance Imaging (MRI) image, Neck MRI image, Lungs Computed Tomography (CT) Scan image datasets and patient medical data with 500 characters, 1000 characters and 1500 characters. And, it is evaluated based on time coefficient of encryption and decryption, histogram, entropy, similarity score (Mean Square Error), quality score (peak signal-to-noise ratio), motion activity index (number of changing pixel rate), unified average changing intensity, image similarity score (structure similarity index measurement) between original and encrypted images. Also, the proposed technique is compared with other recent state of arts methods for 500 characters embedding and performed better than those techniques. The proposed method is more stable and embeds comparativel
暂无评论