Fog computing is a promising technology that has been emerged to handle the growth of smart devices as well as the popularity of latency-sensitive and location-awareness Internet of Things(IoT)*** the emergence of IoT...
详细信息
Fog computing is a promising technology that has been emerged to handle the growth of smart devices as well as the popularity of latency-sensitive and location-awareness Internet of Things(IoT)*** the emergence of IoT-based services,the industry of internet-based devices has *** number of these devices has raised from millions to billions,and it is expected to increase further in the near ***,additional challenges will be added to the traditional centralized cloud-based architecture as it will not be able to handle that growth and to support all connected devices in real-time without affecting the user *** data aggregation models for Fog enabled IoT environ-ments possess high computational complexity and communication ***-fore,in order to resolve the issues and improve the lifetime of the network,this study develops an effective hierarchical data aggregation with chaotic barnacles mating optimizer(HDAG-CBMO)*** HDAG-CBMO technique derives afitness function from many relational matrices,like residual energy,average distance to neighbors,and centroid degree of target ***,a chaotic theory based population initialization technique is derived for the optimal initial position of ***,a learning based data offloading method has been developed for reducing the response time to IoT user requests.A wide range of simulation analyses demonstrated that the HDAG-CBMO technique has resulted in balanced energy utilization and prolonged lifetime of the Fog assisted IoT networks.
In the realm of deep learning, Generative Adversarial Networks (GANs) have emerged as a topic of significant interest for their potential to enhance model performance and enable effective data augmentation. This paper...
详细信息
The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boo...
详细信息
The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boost converter is developed to provide the necessary output voltage and power while accommodating variations in input sources. This converter is specifically designed for the efficient usage of renewable energy. The proposed architecture integrates three separate unidirectional input power sources: photovoltaics, fuel cells, and storage system batteries. The architecture has five switches, and the implementation of each switch in the converter is achieved by applying the calculated duty ratios in various operating states. The closed-loop response of the converter with a proportional-integral (PI) controller-based switching system is examined by analyzing the Matlab-Simulink model utilizing a proportional-integral derivative (PID) tuner. The controller can deliver the desired output voltage of 400 V and an average power of 2 kW while exhibiting low switching transient effects. Therefore, the proposed multi-input interleaved boost converter demonstrates robust results for real-time applications by effectively harnessing renewable power sources.
With recent advancements made in wireless communication techniques,wireless sensors have become an essential component in both data collection as well as tracking *** Sensor Network(WSN)is an integral part of Internet...
详细信息
With recent advancements made in wireless communication techniques,wireless sensors have become an essential component in both data collection as well as tracking *** Sensor Network(WSN)is an integral part of Internet of Things(IoT)and it encounters different kinds of security *** is designed as a game changer for highly secure and effective digital ***,the current research paper focuses on the design of Metaheuristic-based Clustering with Routing Protocol for Blockchain-enabled WSN abbreviated as *** proposed MCRP-BWSN technique aims at deriving a shared memory scheme using blockchain technology and determine the optimal paths to reach the destination in clustered *** MCRP-BWSN technique,Chimp Optimization Algorithm(COA)-based clustering technique is designed to elect a proper set of Cluster Heads(CHs)and organize the selected *** addition,Horse Optimization Algorithm(HOA)-based routing technique is also presented to optimally select the routes based onfitness ***,HOA-based routing technique utilizes blockchain technology to avail the shared mem-ory among nodes in the *** nodes are treated as coins whereas the ownership handles the sensor nodes and Base Station(BS).In order to validate the enhanced performance of the proposed MCRP-BWSN technique,a wide range of simulations was conducted and the results were examined under different *** on the performance exhibited in simulation outcomes,the pro-posed MCRP-BWSN technique has been established as a promising candidate over other existing techniques.
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online *** tackle this challenge,our study introduces a new ap...
详细信息
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online *** tackle this challenge,our study introduces a new approach employing Bidirectional Encoder Representations from the Transformers(BERT)base model(cased),originally pretrained in *** model is uniquely adapted to recognize the intricate nuances of Arabic online communication,a key aspect often overlooked in conventional cyberbullying detection *** model is an end-to-end solution that has been fine-tuned on a diverse dataset of Arabic social media(SM)tweets showing a notable increase in detection accuracy and sensitivity compared to existing *** results on a diverse Arabic dataset collected from the‘X platform’demonstrate a notable increase in detection accuracy and sensitivity compared to existing methods.E-BERT shows a substantial improvement in performance,evidenced by an accuracy of 98.45%,precision of 99.17%,recall of 99.10%,and an F1 score of 99.14%.The proposed E-BERT not only addresses a critical gap in cyberbullying detection in Arabic online forums but also sets a precedent for applying cross-lingual pretrained models in regional language applications,offering a scalable and effective framework for enhancing online safety across Arabic-speaking communities.
Sentiment analysis plays an important role in distilling and clarifying content from movie reviews,aiding the audience in understanding universal views towards the ***,the abundance of reviews and the risk of encounte...
详细信息
Sentiment analysis plays an important role in distilling and clarifying content from movie reviews,aiding the audience in understanding universal views towards the ***,the abundance of reviews and the risk of encountering spoilers pose challenges for efcient sentiment analysis,particularly in Arabic *** study proposed a Stochastic Gradient Descent(SGD)machine learning(ML)model tailored for sentiment analysis in Arabic and English movie *** allows for fexible model complexity adjustments,which can adapt well to the Involvement of Arabic language *** adaptability ensures that the model can capture the nuances and specifc local patterns of Arabic text,leading to better *** distinct language datasets were utilized,and extensive pre-processing steps were employed to optimize the datasets for *** proposed SGD model,designed to accommodate the nuances of each language,aims to surpass existing models in terms of accuracy and *** SGD model achieves an accuracy of 84.89 on the Arabic dataset and 87.44 on the English dataset,making it the top-performing model in terms of accuracy on both *** indicates that the SGD model consistently demonstrates high accuracy levels across Arabic and English *** study helps deepen the understanding of sentiments across various linguistic *** many studies that focus solely on movie reviews,the Arabic dataset utilized here includes hotel reviews,ofering a broader perspective.
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Fish classification and object detection are crucial tasks in the fishery industry. The use of computer vision and deep learning techniques can help automate these tasks and improve the efficiency of the fishery indus...
详细信息
Weather variability significantly impacts crop yield, posing challenges for large-scale agricultural operations. This study introduces a deep learning-based approach to enhance crop yield prediction accuracy. A Multi-...
详细信息
The widespread adoption of Online Platforms for our day-to-day life is increasingly contributing to the rise of Online Aggression and its escalation. Consequently, there is a need for a robust mechanism that could aut...
详细信息
暂无评论