This work provides a basis for studying energy management optimisation in power-split hybrid electric vehicles (PSHEVs) to reduce fuel consumption and increase powertrain efficiency by enforcing a strategy related to ...
详细信息
Vehicular Named Data Networks (VNDN) is a content centric approach for vehicle networks. The fundamental principle of addressing the content rather than the host, suits vehicular environment. There are numerous challe...
详细信息
We demonstrate a toroidal classification for quantum spin systems, revealing an intrinsic geometric duality within this structure. Through our classification and duality, we reveal that various bipartite quantum featu...
详细信息
We demonstrate a toroidal classification for quantum spin systems, revealing an intrinsic geometric duality within this structure. Through our classification and duality, we reveal that various bipartite quantum features in magnon systems can manifest equivalently in both bipartite ferromagnetic and antiferromagnetic materials, based upon the availability of relevant Hamiltonian parameters. Additionally, the results highlight the antiferromagnetic regime as an ultrafast dual counterpart to the ferromagnetic regime, both exhibiting identical capabilities for quantum spintronics and technological applications. Concrete illustrations are provided, demonstrating how splitting and squeezing types of two-mode magnon quantum correlations can be realized across ferro- and antiferromagnetic regimes.
The multi-layer vector approximate message passing algorithm is applied to the problem of channel estimation in underwater acoustic communication addressing the estimation of time-varying channel characteristics. A pr...
详细信息
Hepatitis is an infection that affects the liver through contaminated foods or blood transfusions,and it has many types,from normal to *** is diagnosed through many blood tests and factors;Artificial Intelligence(AI)t...
详细信息
Hepatitis is an infection that affects the liver through contaminated foods or blood transfusions,and it has many types,from normal to *** is diagnosed through many blood tests and factors;Artificial Intelligence(AI)techniques have played an important role in early diagnosis and help physicians make *** study evaluated the performance of Machine Learning(ML)algorithms on the hepatitis data *** dataset contains missing values that have been processed and outliers *** dataset was counterbalanced by the Synthetic Minority Over-sampling Technique(SMOTE).The features of the data set were processed in two ways:first,the application of the Recursive Feature Elimination(RFE)algorithm to arrange the percentage of contribution of each feature to the diagnosis of hepatitis,then selection of important features using the t-distributed Stochastic Neighbor Embedding(t-SNE)and Principal Component Analysis(PCA)***,the SelectKBest function was applied to give scores for each attribute,followed by the t-SNE and PCA ***,the classification algorithms K-Nearest Neighbors(KNN),Support Vector Machine(SVM),Artificial Neural Network(ANN),Decision Tree(DT),and Random Forest(RF)were fed by the dataset after processing the features in different methods are RFE with t-SNE and PCA and SelectKBest with t-SNE and PCA).All algorithms yielded promising results for diagnosing hepatitis data *** RF with RFE and PCA methods achieved accuracy,Precision,Recall,and AUC of 97.18%,96.72%,97.29%,and 94.2%,respectively,during the training *** the testing phase,it reached accuracy,Precision,Recall,and AUC by 96.31%,95.23%,97.11%,and 92.67%,respectively.
Identifying drug–target interactions (DTIs) is a critical step in both drug repositioning. The labor-intensive, time-consuming, and costly nature of classic DTI laboratory studies makes it imperative to create effici...
详细信息
Predicting RNA binding protein(RBP) binding sites on circular RNAs(circ RNAs) is a fundamental step to understand their interaction mechanism. Numerous computational methods are developed to solve this problem, but th...
详细信息
Predicting RNA binding protein(RBP) binding sites on circular RNAs(circ RNAs) is a fundamental step to understand their interaction mechanism. Numerous computational methods are developed to solve this problem, but they cannot fully learn the features. Therefore, we propose circ-CNNED, a convolutional neural network(CNN)-based encoding and decoding framework. We first adopt two encoding methods to obtain two original matrices. We preprocess them using CNN before fusion. To capture the feature dependencies, we utilize temporal convolutional network(TCN) and CNN to construct encoding and decoding blocks, respectively. Then we introduce global expectation pooling to learn latent information and enhance the robustness of circ-CNNED. We perform circ-CNNED across 37 datasets to evaluate its effect. The comparison and ablation experiments demonstrate that our method is superior. In addition, motif enrichment analysis on four datasets helps us to explore the reason for performance improvement of circ-CNNED.
Nowadays,smart buildings rely on Internet of things(loT)technology derived from the cloud and fog computing paradigms to coordinate and collaborate between connected *** is characterized by low latency with a wider sp...
详细信息
Nowadays,smart buildings rely on Internet of things(loT)technology derived from the cloud and fog computing paradigms to coordinate and collaborate between connected *** is characterized by low latency with a wider spread and geographically distributed nodes to support mobility,real-time interaction,and location-based *** provide optimum quality of user life in moderm buildings,we rely on a holistic Framework,designed in a way that decreases latency and improves energy saving and services efficiency with different *** EVent system Specification(DEVS)is a formalism used to describe simulation models in a modular *** this work,the sub-models of connected objects in the building are accurately and independently designed,and after installing them together,we easily get an integrated model which is subject to the fog computing *** results show that this new approach significantly,improves energy efficiency of buildings and reduces ***,with DEVS,we can easily add or remove sub-models to or from the overall model,allowing us to continually improve our designs.
Blockchain has recently garnered considerable attention in academic research across various fields. In the Internet of Things (IoT) domain, blockchain is viewed as a tool for establishing a decentralized, reliable, an...
详细信息
In this work, VoteDroid a novel fine-tuned deep learning models-based ensemble voting classifier has been proposed for detecting malicious behavior in Android applications. To this end, we proposed adopting the random...
详细信息
暂无评论